

European Commission Horizon 2020 European Union funding for Research & Innovation

memmo Introduction to Optimal Control

Ludovic Righetti (NYU) Nicolas Mansard (CNRS)

- What can we do with optimal control?
- Where is optimal-control is the robot galaxy?
- What is dynamic programming?
- Should you shoot or collocate?
- Why make your dynamic program differential?
- Is multiple shooting about guns?
- What is Crocoddyl good for, and what is beyond?

What can we do with optimal control? VIDEO INTRODUCTION

Autonomous Driving

Information Theoretic Model Predictive Control [Williams et al. 2018]

Legged Locomotion

 Boston Dynamics

OC with Linear Inverted Pendulum Model [Herdt et al. 2010]

OC with Centroidal Momentum Dynamics and Full Body Kinematics [Ponton et al. 2018], [Carpentier et al. 2018], [Dai et al. 2014], [Herzog et al. 2015]

Full-body Optimal Control

Synthesis and stabilization of complex behaviors with online trajectory optimization

Yuval Tassa, Tom Erez and Emo Todorov

Movement Control Laboratory University of Washington

IROS 2012

[Tassa et al. 2010] DDP with Full-Body Dynamics (realtime control)

[Mordatch et al. 2012] Nonlinear Optimization for Multi-Contact Tasks

Discovery of complex behaviors through Contact-Invariant Optimization

Igor Mordatch, Emo Todorov and Zoran Popovic

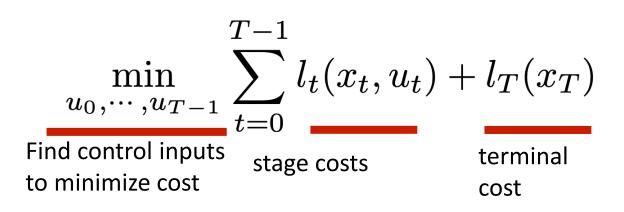
Movement Control Laboratory and GRAIL University of Washington

SIGGRAPH 2012

MEMMO: Memory c

What is dynamic programing

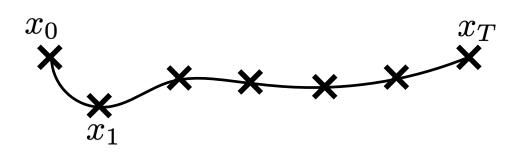
INTRODUCTION TO BELMAN'S EQUATIONS

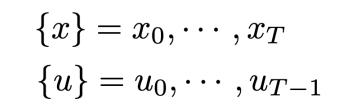


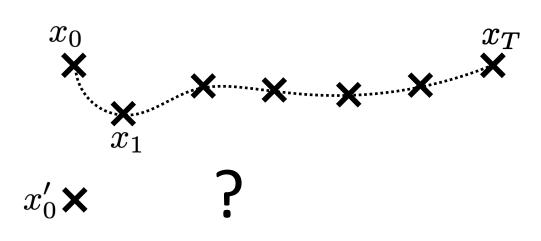
$$x_{t+1} = f_t(x_t, u_t)$$
$$g(x_t, u_t) \le 0$$

deterministic dynamics

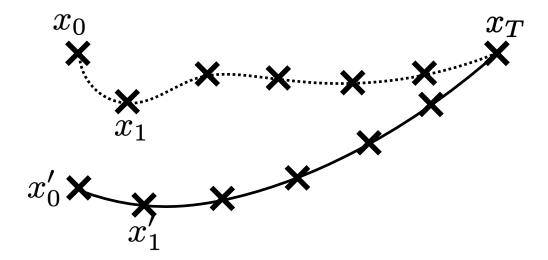
state and control constraints

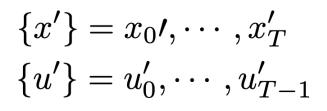


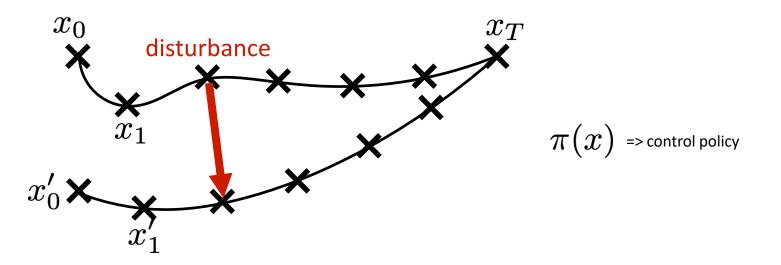


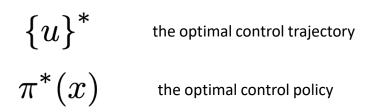


$\{x\} = x_0, \cdots, x_T$ $\{u\} = u_0, \cdots, u_{T-1}$









Principle of Optimality

How can we find the optimal control? The Principle of Optimality breaks down the problem

MEMMO: Memory of Motion – www.memmo-project.eu

Subpath of optimal paths are also optimal for then own subproblem

Principle of Optimality

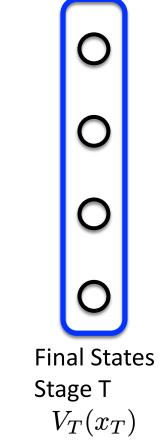
How can we find the optimal control? The Principle of Optimality breaks down the problem

Optimal Cost to Go or Value $V_t(x_t) = \min_{u_t, \cdots, u_{N-1}} \sum_{k=t}^{T-1} l_k(x_k, u_k) + l_T(x_T)$ Function

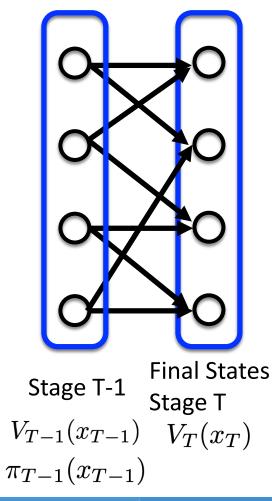
Bellman's Principle of Optimality

$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$
$$x_{t+1} = f_t(x_t, u_t)$$

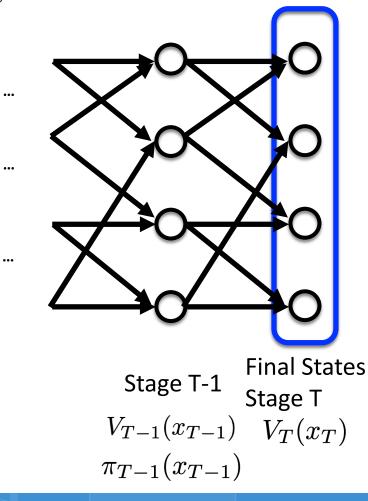
$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$



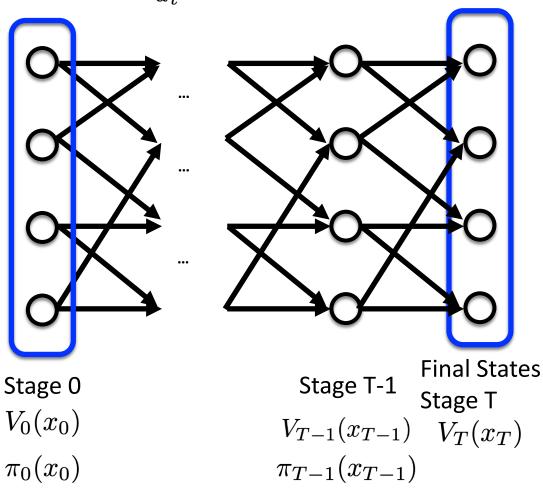
$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$



 $V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$



 $V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$



Problems with linear dynamics and quadratic costs can be solved explicitly!

$$x_{t+1} = F_x x_t + F_u u_t$$
 Linear dynamics

$$\min \sum_{t=0}^{T-1} (x_t^T L_x x_t + u_t^T L_u u_t) + x_T^T L_x x_T \qquad \text{Quadratic cost}$$

$$L_x \ge 0 \quad L_u > 0$$

• Set
$$W_T = L_x$$

□ For t from T-1 to 0, do backward recursion

$K_{t} = -(Fu^{T} W_{t+1} F_{u} + L_{u})^{-1} F_{u}^{T} W_{t+1} F_{x}$	<u>Discrete-time</u>
$Q_{t} = L_{x} + F_{x}^{T}W_{t} + F_{x} + F_{x}^{T}W_{t+1}F_{u}K_{t}$	Riccati equation

The cost-to-go at stage t is
 The optimal policy is
 The optimal policy is
 The optimal policy is

The policy is a linear feedback controller with gain K_t

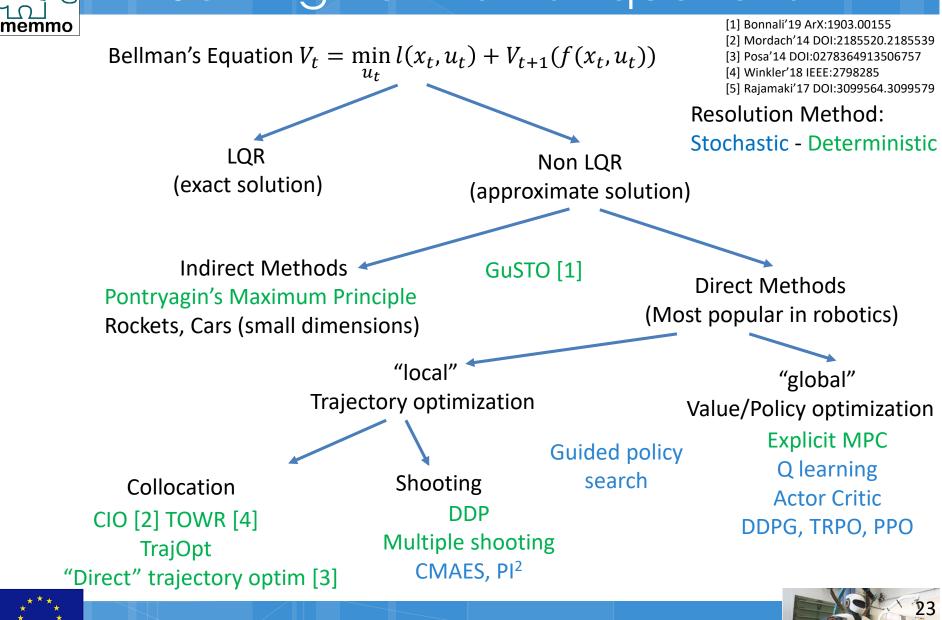
Bellman Equation
$$V_t(x_t) = \min_{u_t} l_t(x_t, u_t) + V_{t+1}(x_{t+1})$$

Problems:

- Curse of dimensionality
- minimization in Bellman equation

⇒ Approximate solution to Bellman equation
 (DDP, trajectory optimization, reinforcement learning, etc)

Solving Bellman's Equations



* * * * * * * * *

Should we collocate or shoot? TRANSCRIPTION

Transcribing: "representing" the reality

$$\min_{\substack{\underline{x}:t \to x(t) \\ \underline{u}:t \to u(t)}} \int_0^T l(x(t), u(t)) dt + l_T(x(T))$$

s.t. $\forall t, \dot{x}(t) = f(x(t), u(t))$

Optimal control problem (OCP) with continuous variables (infinite-dimension)

$$\min_{\substack{\underline{x}=\theta_{x1}\dots\theta_{xn}\\\underline{u}=\theta_{u1}\dots\theta_{un}}} \sum_{t} l(x(t|\theta), u(t|\theta)) + l_T(x(T|\theta))$$
s.t. at some $t, \dot{x}(t|\theta) = f(t|\theta_x, \theta_u)$

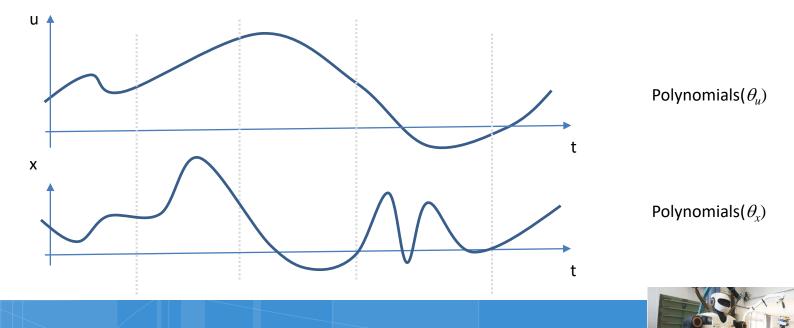
Nonlinear optimization problem (NLP) with static variables (finite dimension)

 $\theta_x \theta_u$ represents the continuous <u>x</u>,<u>u</u> trajectories

Transcription:

<u>*u*</u> is easy to represent (piecewise polynomials)

- what about \underline{x} ?
- **\Box** Collocation: <u>x</u> is represented by another polynomials



Transcription:

<u>*u*</u> is easy to represent (piecewise polynomials)

– what about \underline{x} ?

• Collocation: <u>x</u> is represented by another polynomials

Problems:

The solution to $\dot{x}(t) = f(x(t), u(t))$ is not polynomial

The dynamics is only checked at some remote points

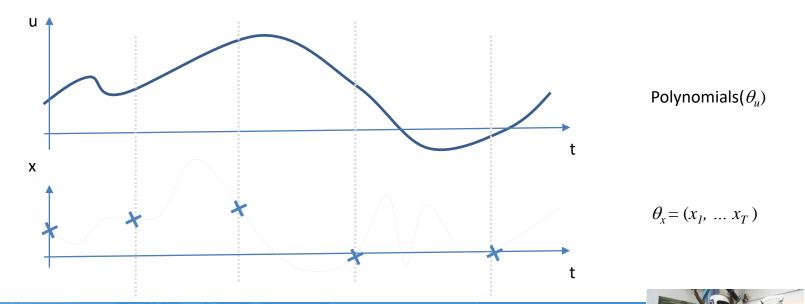
Transcription:

<u>*u*</u> is easy to represent (piecewise polynomials)

– what about \underline{x} ?

□ Shooting: <u>x</u> is represented by and integrator

and only evaluated sparsely



Transcription:

<u>*u*</u> is easy to represent (piecewise polynomials)

– what about \underline{x} ?

• Shooting: \underline{x} is represented by and integrator

and only evaluated sparsely

Problems:

The state is sparsely and approximately known

You may need an accurate integrator (complex+costly)

C Shooting as control-only problem

$$\min_{\underline{u}=(u_0..u_{T-1})}\sum_t l(x(u_0..u_{t-1}|x_0), u_t) + l_T (x(u_0..u_{T-1}))$$

where $x(u_0...u_{t-1}|x_0)$ if a function of \underline{u}

Unconstrained optimization The function <u>u(x</u>) is numerically unstable

Easy to implement

- Integrator, derivatives, Newton-descent
- Side effect: you can focus on efficiency

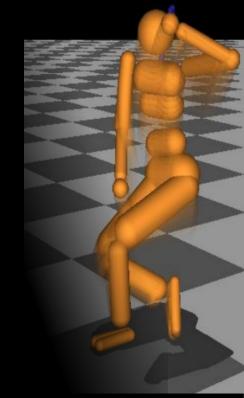
- Numerically unstable
- **\Box** The initial-guess θ_{xu} should be meaningful
- At then end, maybe we don't care so much ...

MEMMO: Memory of Motion – www.memmo-project.eu

Tassa et al., IROS' 12

D.D.P.

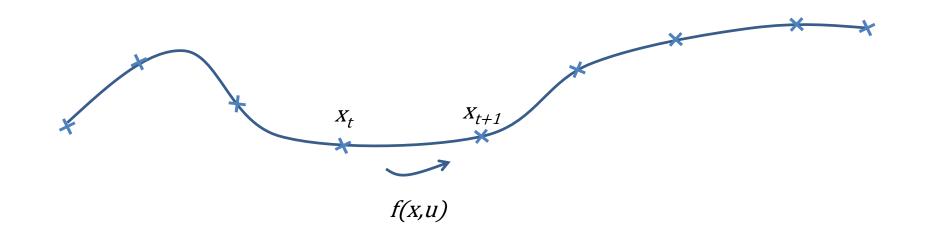
Why make your dynamic program *differential*?



Multiple views on DDP

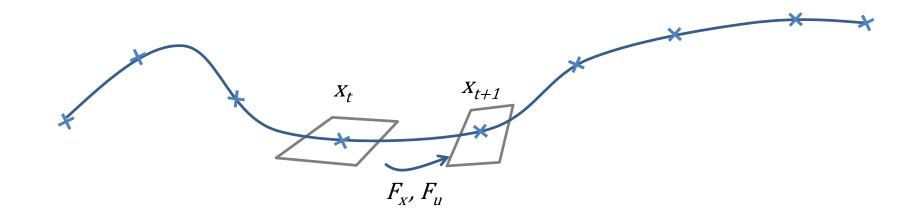
1. DDP as iterative LQR

DDP as iterative LQR



• "Next-step" is a nonlinear function $\Delta x' = f(x + \Delta x, u + \Delta u) - f(x, u)$

DDP as iterative LQR



"Next-step" is a nonlinear function ∆x' = f(x+∆x, u+∆u) - f(x, u) Approximate by

$$\Delta x' = f(x, u) + F_x \Delta x + F_u \Delta u - f(x, u)$$

Nonlinear optimal control problem

$$\min_{\substack{\{x\},\{u\}}} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T)$$

s.t. $\forall t=0...T-1 \quad x_{t+1} = f(x_t, u_t)$

Linear-Quadradic problem ... solved in Part 1.

$$\min_{\{\Delta x\},\{\Delta u\}} \sum_{t=0}^{T-1} \begin{pmatrix} L_x \\ L_u \end{pmatrix}^T \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix}^T \begin{pmatrix} L_{xx} & L_{xu} \\ L_{ux} & L_{uu} \end{pmatrix} \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix} + \cdots$$

s.t.
$$\forall t=0..T-1 \Delta x_{t+1} = F_x \Delta x_t + F_u \Delta u_t$$

DDP as iterative LQR

Algorithm iLQR

Initialize with a given trajectory $\{x_0\}, \{u_0\}$ Repeat

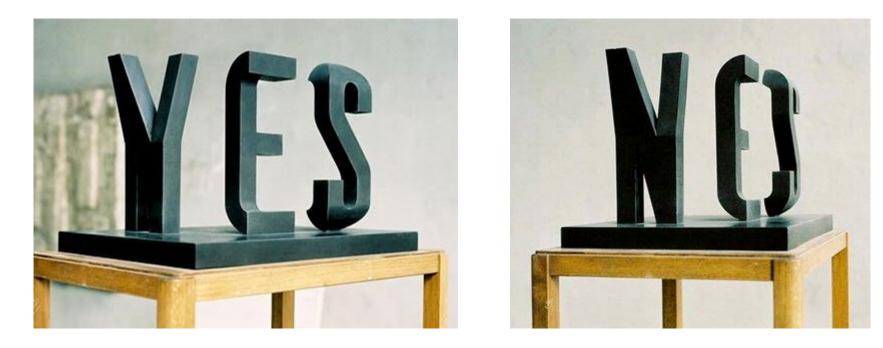
Linearize/Quadratize the OCP

Compute the LQR policy

Simulate (roll-out) with LQR regulator

Until local minimum is reached

Multiple views on DDP



2. DDP as a 2-pass algorithm

$$V_t = \min_{u_t} l(x_t, u_t) + V_{t+1}(f(x_t, u_t))$$

Backward propagation

$$Q_t = l(x_t, u_t) + V_{t+1}(f(x_t, u_t))$$

Greedy optimization

$$V_t = \min_{u_t} Q_t(x_t, u_t)$$

Q = l + V'

$V = \min_{u} Q$

Pass 1: back-propagate an approximation of V We can solve Belman for quadratic cost and linear dynamics

Pass 2: forward propagate gains and trajectory

Pass 1: backpropagate an approximation of V

Pass 2: forward propagate gains and trajectory

- Globalization (because nonconvexity)
- Line search
 - $u = u^* + k + K (x-x^*)$ • x' = f(x,u)
- Regularization

$$Q_{uu} = L_{uu} + F_u^T V_{xx} F_u$$
$$k = Q_{uu}^{-1} Q_u$$
$$K = Q_{uu}^{-1} Q_{ux}$$

Multiple views on DDP

3. DDP as sparse SQP

$$\min_{\{x\},\{u\}} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T)$$

s.t. $\forall t = 0...T-1 \quad x_{t+1} = f(x_t, u_t)$

Reminder

Non linear problem

 $\min_{y} l(y)$
s.t. f(y)=0

Resulting "linearization"

$$\min_{\Delta y} l(y) + L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y$$

s.t. f(y) + F_y $\Delta y = 0$

$$\min_{\Delta y} l(y) + L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y$$

s.t. f(y) + F_y $\Delta y = 0$

□ Lagrangian on the NLP

$$\mathcal{L}(y, \lambda) = l(y) + \lambda^{T} f(y)$$
Iagrangian
Primal variable
Dual variable (multipliers)

$$\min_{\Delta y} l(y) + L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y$$

s.t. $f(y) + F_y \Delta y = 0$

□ Lagrangian on the QP

$$\begin{aligned} \mathfrak{L}(\Delta \mathbf{y}, \lambda) &= L_{y} \Delta \mathbf{y} + \frac{1}{2} \Delta \mathbf{y}^{T} L_{yy} \Delta \mathbf{y} \\ &+ \lambda^{T} \left(\mathbf{F}_{y} \Delta \mathbf{y} - f(\mathbf{y}) \right) \end{aligned}$$

$$\min_{\Delta y} l(y) + L_y \Delta y + \frac{1}{2} \Delta y^T L_{yy} \Delta y$$

s.t. f(y) + F_y $\Delta y = 0$

Lagrangian on the QP

$$\begin{aligned} \mathfrak{L}(\Delta \mathbf{y}, \lambda) &= L_{y} \Delta \mathbf{y} + \frac{1}{2} \Delta \mathbf{y}^{T} L_{yy} \Delta \mathbf{y} \\ &+ \lambda^{T} \left(\mathbf{F}_{\mathbf{y}} \Delta \mathbf{y} - f(\mathbf{y}) \right) \end{aligned}$$

Newton step

$$\begin{pmatrix} L_{yy} & F_y^T \\ F_y & 0 \end{pmatrix} \begin{pmatrix} \Delta y \\ \lambda \end{pmatrix} = \begin{pmatrix} -L_y \\ -f(y) \end{pmatrix}$$

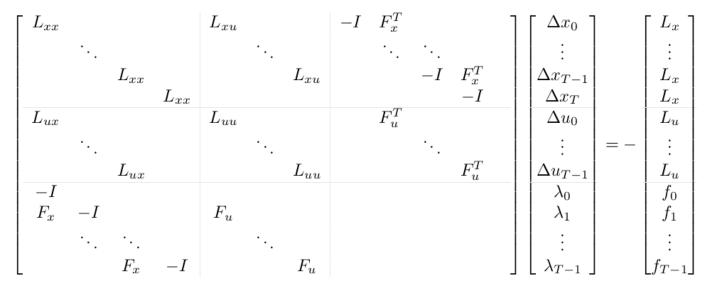
$$\min_{\{\Delta x\},\{\Delta u\}} \sum_{t=0}^{T-1} \begin{pmatrix} L_x \\ L_u \end{pmatrix}^T \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix}^T \begin{pmatrix} L_{xx} & L_{xu} \\ L_{ux} & L_{uu} \end{pmatrix} \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix} + \cdots$$

s.t. $\forall t=0..T-1 \quad \Delta x_{t+1} = F_x \Delta x_t + F_u \Delta u_t + f_t$

$$\begin{pmatrix} L_{yy} & F_{y}^{T} \\ F_{y} & 0 \end{pmatrix} \begin{pmatrix} \Delta y \\ \lambda \end{pmatrix} = \begin{pmatrix} -L_{y} \\ -f(y) \end{pmatrix}$$

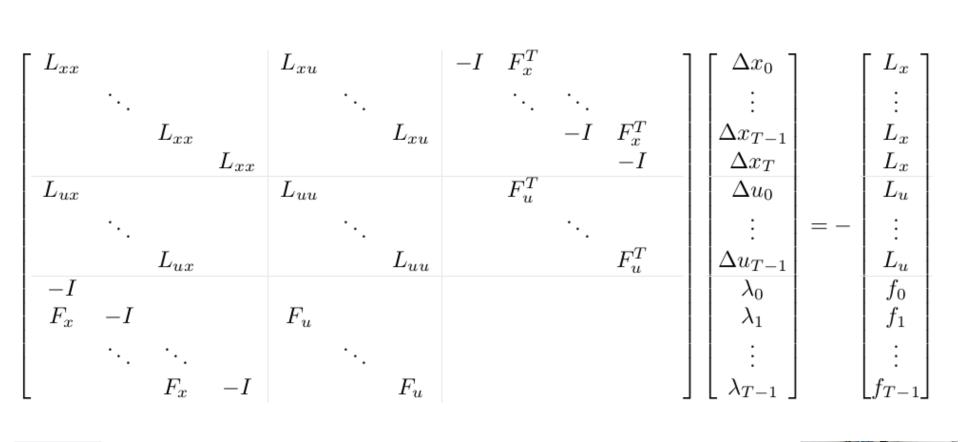
 $\min_{\{\Delta x\},\{\Delta u\}} \sum_{i=1}^{T} \begin{pmatrix} L_x \\ L_u \end{pmatrix}^T \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix}^T \begin{pmatrix} L_{xx} & L_{xu} \\ L_{ux} & L_{uu} \end{pmatrix} \begin{pmatrix} \Delta x_t \\ \Delta u_t \end{pmatrix} + \cdots$

s.t. $\forall t=0..T-1 \quad \Delta x_{t+1} = F_x \Delta x_t + F_u \Delta u_t + f_t$



 $\min_{\{\Delta x\},\{\Delta u\}} \sum_{t=0}^{L-1} {\binom{L_x}{L_u}}^T {\binom{\Delta x_t}{\Delta u_t}} + \frac{1}{2} {\binom{\Delta x_t}{\Delta u_t}}^T {\binom{L_{xx}}{L_{ux}}} \frac{L_{xu}}{L_{uu}} {\binom{\Delta x_t}{\Delta u_t}} + \cdots$

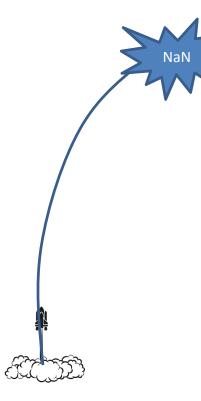
s.t.
$$\forall t=0..T-1 \quad \Delta x_{t+1} = F_x \Delta x_t + F_u \Delta u_t + f_t$$



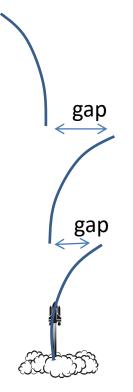
What is Crocoddyl good for, and what is beyond?

BEYOND DDP

Multiple shooting

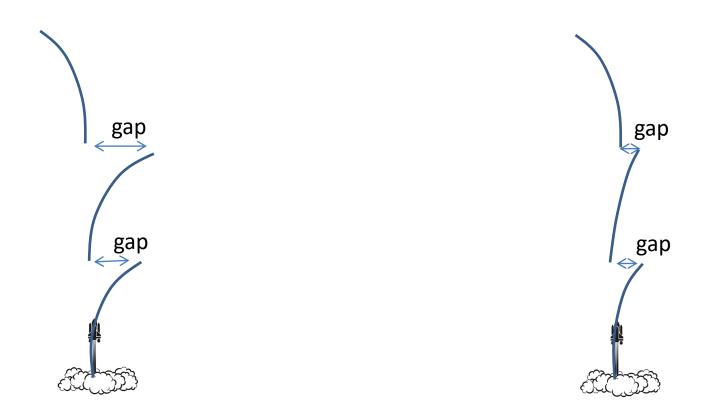


Single shooting "Your control is bad!"

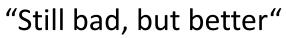


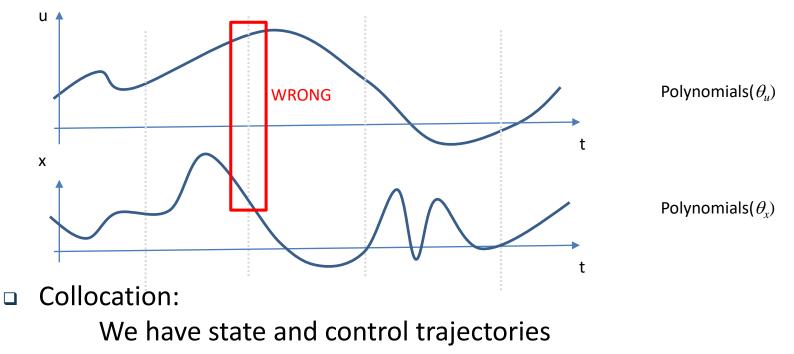
Multiple shooting "Your control is bad! "

Multiple shooting

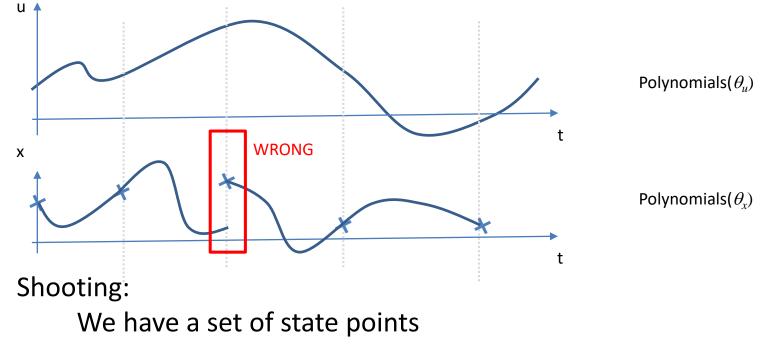


"Your control is bad! "



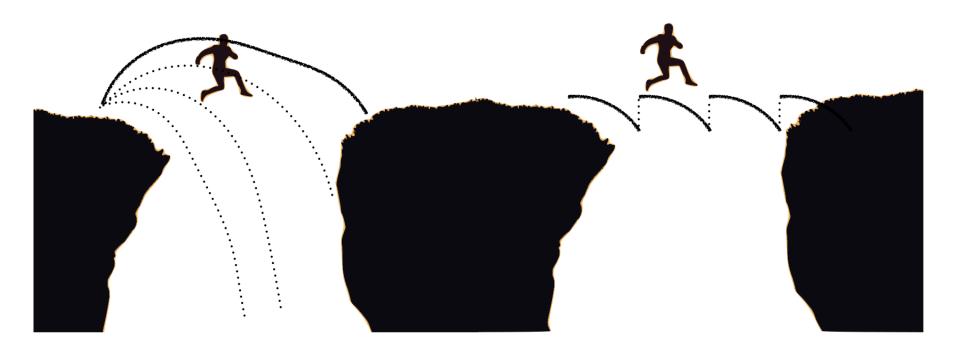


... and they do not match



... and the integrator does not reach them

Example of jumping



Thanks Rohan for the illustration

Single

Multiple

$$\min_{\{x\},\{u\}} \sum_{t=0}^{T-1} l(x_t, u_t) + l_T(x_T)$$

s.t. $\forall t=0..T-1 \quad x_{t+1} = f(x_p, u_t)$
 $\forall t=0..T \quad g(x_p, u_t) \le 0$

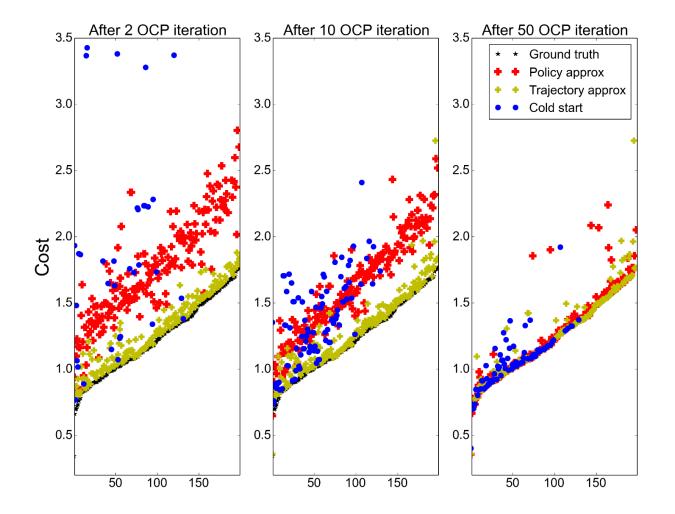
By projection SQP, active set

By penalty Interior point, augmented lagrangian

Model predictive control

Closing the loop on the real robot

Importance of the warm start



Start to warm-up your fingers

THE END

Numerical problems (few/none discrete constraints)

- nonconvex ... warm start needed
- very constrained ... mostly feasibility problems

The formulation/transcription is our central problem

- expert+math knowledge
- keep generalization

Optimal control = reinforcement learning

- train offline
- generalize online

