
MEMMO: Memory of Motion – www.memmo-project.euMEMMO: Memory of Motion – www.memmo-project.eu 1

Introduction 

to Optimal Control

Ludovic Righetti (NYU)

Nicolas Mansard (CNRS)



MEMMO: Memory of Motion – www.memmo-project.eu

Outline

 What can we do with optimal control?

 Where is optimal-control is the robot galaxy?

 What is dynamic programming?

 Should you shoot or collocate?

 Why make your dynamic program differential?

 Is multiple shooting about guns?

 What is Crocoddyl good for, and what is beyond?
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VIDEO INTRODUCTION

What can we do with optimal control?
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Autonomous Driving

Information Theoretic Model 
Predictive Control 
[Williams et al. 2018]
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Legged Locomotion

OC with Linear Inverted 
Pendulum Model
[Herdt et al. 2010]

OC with Centroidal Momentum Dynamics and 
Full Body Kinematics
[Ponton et al. 2018], [Carpentier et al. 2018], 
[Dai et al. 2014], [Herzog et al. 2015]
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Full-body Optimal Control

[Tassa et al. 2010]
DDP with Full-Body Dynamics 
(realtime control)

Boston Dynamics Atlas: OC with Centroidal 
Momentum Dynamics and Full Body Kinematics
[Ponton et al. 2018], [Carpentier et al. 2018], 
[Dai et al. 2014], [Herzog et al. 2015]

[Mordatch et al. 2012]
Nonlinear Optimization for 
Multi-Contact Tasks
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What is dynamic programing

7

INTRODUCTION

TO BELMAN’S EQUATIONS
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Optimal control problem

Find control inputs 
to minimize cost

stage costs terminal 
cost

deterministic dynamics

state and control constraints



MEMMO: Memory of Motion – www.memmo-project.eu

Optimal control problem
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Optimal control problem

?
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Optimal control problem
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Optimal control problem

=> control policy

disturbance

the optimal control trajectory

the optimal control policy
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Principle of Optimality

How can we find the optimal control?
The Principle of Optimality breaks down the problem

Subpath of optimal paths are also
optimal for then own subproblem
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Principle of Optimality

How can we find the optimal control?
The Principle of Optimality breaks down the problem

Optimal Cost to 
Go or Value 
Function

Bellman’s 
Principle of 
Optimality
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Dynamic Programming

Final States
Stage T
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Dynamic Programming

Stage T-1
Final States
Stage T
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Dynamic Programming

Stage T-1

…

…

…

Final States
Stage T
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Dynamic Programming

Stage T-1

…

…

…

Stage 0
Final States
Stage T
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Linear Quadratic Problems

Problems with linear dynamics and quadratic 
costs can be solved explicitly!

Quadratic cost

Linear dynamics
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 Set   WT = Lx

 For t from T-1 to 0, do backward recursion

 The cost-to-go at stage t is  Vt(xt) = xt
T Wt xt

 The optimal policy is *(xt) = Kt xt

The policy is a linear feedback controller with gain Kt

Discrete-time 
Riccati equation

Linear Quadratic Problems

Kt = -(FuT Wt+1 Fu + Lu)-1 Fu
T Wt+1 Fx

Qt = Lx + Fx
TWt + Fx + Fx

T Wt +1 Fu Kt
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Dynamic Programming

Bellman Equation

Problems:
- Curse of dimensionality

- minimization in Bellman equation

 Approximate solution to Bellman equation 
(DDP, trajectory optimization, reinforcement learning, etc)
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Solving Bellman’s Equations

23

Bellman’s Equation 𝑉𝑡 = min
𝑢𝑡

𝑙 𝑥𝑡, 𝑢𝑡 + 𝑉𝑡+1(𝑓(𝑥𝑡, 𝑢𝑡))

LQR 
(exact solution)

Non LQR
(approximate solution)

Indirect Methods
Pontryagin’s Maximum Principle
Rockets, Cars (small dimensions)

Direct Methods 
(Most popular in robotics)

“local”
Trajectory optimization 

“global”
Value/Policy optimization  

Resolution Method:
Stochastic - Deterministic 

Collocation Shooting

DDP
Multiple shooting

CMAES, PI2

Explicit MPC
Q learning
Actor Critic

DDPG, TRPO, PPO

Guided policy 
search

CIO [2] TOWR [4]
TrajOpt

“Direct” trajectory optim [3]

GuSTO [1]

[1] Bonnali’19 ArX:1903.00155
[2] Mordach’14 DOI:2185520.2185539
[3] Posa’14 DOI:0278364913506757
[4] Winkler’18 IEEE:2798285
[5] Rajamaki’17 DOI:3099564.3099579
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TRANSCRIPTION

Should we collocate or shoot?

24
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Transcribing:

“representing“ the reality

min
𝑥:𝑡→𝑥(𝑡)

𝑢:𝑡→𝑢(𝑡)

න
0

𝑇

𝑙 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑙𝑇 𝑥 𝑇

s.t. ∀𝑡, ሶ𝑥(t) = f(x(t),u(t))

Optimal control problem (OCP)

with continuous variables

(infinite-dimension)

min
𝑥=𝜃𝑥1…𝜃𝑥𝑛

𝑢=𝜃𝑢1…𝜃𝑢𝑛



𝑡

𝑙 𝑥 𝑡|𝜃 , 𝑢 𝑡|𝜃 + 𝑙𝑇 𝑥 𝑇|𝜃

s.t. a𝑡 𝑠𝑜𝑚𝑒 𝑡, ሶ𝑥(𝑡|𝜃) = f(𝑡|𝜃𝑥, 𝜃𝑢)

Nonlinear optimization problem (NLP)
with static variables
(finite dimension)

x u represents the continuous x,u trajectories
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Transcription: 

shooting versus collocation

u is easy to represent (piecewise polynomials)

– what about x?

 Collocation: x is represented by another polynomials

t

u

x

t

Polynomials(u)

Polynomials(x)
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u is easy to represent (piecewise polynomials)

– what about x?

 Collocation: x is represented by another polynomials

Problems:

The solution to ሶ𝑥(t) = f(x(t),u(t)) is not polynomial

The dynamics is only checked at some remote points

Transcription: 

shooting versus collocation
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u is easy to represent (piecewise polynomials) 

– what about x?

 Shooting: x is represented by and integrator 

and only evaluated sparsely

t

u

x

t

Polynomials(u)

x = (x1, … xT )

Transcription: 

shooting versus collocation
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u is easy to represent (piecewise polynomials) 

– what about x?

 Shooting: x is represented by and integrator 

and only evaluated sparsely

Problems:

The state is sparsely and approximately known

You may need an accurate integrator (complex+costly)

Transcription: 

shooting versus collocation
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Shooting as control-only problem

30

min
𝑢=(𝑢0..𝑢𝑇−1)



𝑡

𝑙(𝑥 𝑢0. . 𝑢𝑡−1 𝑥0 , 𝑢𝑡) + 𝑙𝑇 𝑥 𝑢0. . 𝑢𝑇−1

where 𝑥 𝑢0. . 𝑢𝑡−1 𝑥0 if a function of 𝑢

 Unconstrained optimization

 The function 𝑢(𝑥) is numerically unstable

NaN NaN
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Shooting, pro and cons

 Easy to implement

 Integrator, derivatives, Newton-descent

 Side effect: you can focus on efficiency

 Numerically unstable

 The initial-guess xu should be meaningful

 At then end, maybe we don’t care so much …

31
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D.D.P.
Why make your dynamic program differential?

32

Tassa et al., IROS’ 12
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Multiple views on DDP

33

1. DDP as iterative LQR
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DDP as iterative LQR

 “Next-step”  is a nonlinear function

x’ =f(x+x, u+u) - f(x, u) 

34

xt
xt+1

f(x,u)
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DDP as iterative LQR

 “Next-step”  is a nonlinear function

x’ =f(x+x, u+u) - f(x, u) 
 Approximate by

x’ = f(x, u) +Fx x + Fu u - f(x, u) 
35

xt
xt+1

Fx , Fu
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DDP as iterative LQR

 Nonlinear optimal control problem

 Linear-Quadradic problem … solved in Part 1.

36

min
𝑥 ,{𝑢}



𝑡=0

𝑇−1

𝑙 𝑥𝑡, 𝑢𝑡 + 𝑙𝑇 𝑥𝑇

s.t. t=0..T-1   𝑥t+1 = f(xt,ut )

min
𝑥 ,{𝑢}



𝑡=0

𝑇−1
𝐿𝑥

𝐿𝑢

𝑇 𝑥𝑡

𝑢𝑡
+

1

2

𝑥𝑡

𝑢𝑡

𝑇
𝐿𝑥𝑥 𝐿𝑥𝑢

𝐿𝑢𝑥 𝐿𝑢𝑢

𝑥𝑡

𝑢𝑡
+ ⋯

s.t. t=0..T-1  𝑥t+1 = Fx xt+Fu 𝑢t 
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DDP as iterative LQR

 Algorithm iLQR

Initialize with a given trajectory {x0},{u0}

Repeat

Linearize/Quadratize the OCP

Compute the LQR policy

Simulate (roll-out) with LQR regulator

Until local minimum is reached

37
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Multiple views on DDP

38

2. DDP as a 2-pass algorithm
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DDP as a 2-pass algorithm

𝑉𝑡 = min
𝑢𝑡

𝑙 𝑥𝑡, 𝑢𝑡 + 𝑉𝑡+1(𝑓(𝑥𝑡, 𝑢𝑡))

 Backward propagation

𝑄𝑡 = 𝑙 𝑥𝑡, 𝑢𝑡 + 𝑉𝑡+1(𝑓(𝑥𝑡, 𝑢𝑡))

 Greedy optimization
𝑉𝑡 = min

𝑢𝑡

𝑄𝑡 𝑥𝑡, 𝑢𝑡

39
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DDP as a 2-pass algorithm

𝑄 = 𝑙 + 𝑉′

𝑉 = min
𝑢

𝑄

40
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DDP as a 2-pass algorithm

 Pass 1: back-propagate an approximation of V

 We can solve Belman for quadratic cost and linear 
dynamics

 Pass 2: forward propagate gains and trajectory

41
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DDP as a 2-pass algorithm

 Pass 1: backpropagate an approximation of V

42
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DDP as a 2-pass algorithm

 Pass 2: forward propagate gains and trajectory

43
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DDP as a 2-pass algorithm

 Globalization (because nonconvexity)

 Line search

 u = u* + k + K (x-x*)

 x’ = f(x,u)

 Regularization

 Quu = Luu + Fu
T Vxx Fu

 k = Quu
-1 Qu

 K = Quu
-1 Qux

44
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Multiple views on DDP

45

3. DDP as sparse SQP
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DDP as sparse SQP

min
𝑥 ,{𝑢}



𝑡=0

𝑇−1

𝑙 𝑥𝑡, 𝑢𝑡 + 𝑙𝑇 𝑥𝑇

s.t.  t = 0..T-1   𝑥t+1 = f (xt , ut)

46
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DDP as iterative LQR

 Reminder

 Non linear problem

 Resulting “linearization”

47

min
𝑦

𝑙(𝑦)

s.t. f(y)=0

min
𝑦

𝑙 𝑦 + 𝐿𝑦𝑦 +
1

2
𝑦𝑇 𝐿𝑦𝑦𝑦

s.t. f(y) + Fy 𝑦 =0
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DDP as sparse SQP

 Lagrangian on the NLP

L( y, ) = 𝑙 𝑦 + 𝜆 T f(y) 

48

min
𝑦

𝑙 𝑦 + 𝐿𝑦𝑦 +
1

2
𝑦𝑇 𝐿𝑦𝑦𝑦

s.t. f(y) + Fy 𝑦 =0

lagrangian Primal variable
Dual variable (multipliers)
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DDP as sparse SQP

 Lagrangian on the QP

L( y, )  = 𝐿𝑦𝑦 +
1

2
𝑦𝑇𝐿𝑦𝑦𝑦

+𝜆𝑇 (Fy 𝑦 − 𝑓(𝑦))

49

min
𝑦

𝑙 𝑦 + 𝐿𝑦𝑦 +
1

2
𝑦𝑇 𝐿𝑦𝑦𝑦

s.t. f(y) + Fy 𝑦 =0
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DDP as sparse SQP

 Lagrangian on the QP

L( y, )  = 𝐿𝑦𝑦 +
1

2
𝑦𝑇𝐿𝑦𝑦𝑦

+𝜆𝑇 (Fy 𝑦 − 𝑓(𝑦))

 Newton step

50

min
𝑦

𝑙 𝑦 + 𝐿𝑦𝑦 +
1

2
𝑦𝑇 𝐿𝑦𝑦𝑦

s.t. f(y) + Fy 𝑦 =0

𝐿𝑦𝑦 𝐹𝑦
𝑇

𝐹𝑦 0
𝑦
𝜆

=
−𝐿𝑦

−𝑓(𝑦)
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51

min
𝑥 ,{𝑢}



𝑡=0

𝑇−1
𝐿𝑥

𝐿𝑢

𝑇 𝑥𝑡

𝑢𝑡
+

1

2

𝑥𝑡

𝑢𝑡

𝑇
𝐿𝑥𝑥 𝐿𝑥𝑢

𝐿𝑢𝑥 𝐿𝑢𝑢

𝑥𝑡

𝑢𝑡
+ ⋯

s.t. t=0..T-1    𝑥t+1 = Fx xt+Fu 𝑢t +ft

𝐿𝑦𝑦 𝐹𝑦
𝑇

𝐹𝑦 0
𝑦
𝜆

=
−𝐿𝑦

−𝑓(𝑦)
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52

min
𝑥 ,{𝑢}



𝑡=0

𝑇−1
𝐿𝑥

𝐿𝑢

𝑇 𝑥𝑡

𝑢𝑡
+

1

2

𝑥𝑡

𝑢𝑡

𝑇
𝐿𝑥𝑥 𝐿𝑥𝑢

𝐿𝑢𝑥 𝐿𝑢𝑢

𝑥𝑡

𝑢𝑡
+ ⋯

s.t. t=0..T-1    𝑥t+1 = Fx xt+Fu 𝑢t +ft
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53

min
𝑥 ,{𝑢}



𝑡=0

𝑇−1
𝐿𝑥

𝐿𝑢

𝑇 𝑥𝑡

𝑢𝑡
+

1

2

𝑥𝑡

𝑢𝑡

𝑇
𝐿𝑥𝑥 𝐿𝑥𝑢

𝐿𝑢𝑥 𝐿𝑢𝑢

𝑥𝑡

𝑢𝑡
+ ⋯

s.t. t=0..T-1    𝑥t+1 = Fx xt+Fu 𝑢t +ft
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BEYOND DDP

54

What is Crocoddyl good for, and what is beyond?
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Multiple shooting

55

NaN

gap

gap

Single shooting
“Your control is bad! “

Multiple shooting
“Your control is bad! “
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Multiple shooting

56

gap

gap

“Your control is bad! “ “Still bad, but better“

gap

gap
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Interpretation of dynamics violation

 Collocation:
We have state and control trajectories
… and they do not match

t

u

x

t

Polynomials(u)

Polynomials(x)

WRONG
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 Shooting:
We have a set of state points 
… and the integrator does not reach them 

t

u

x

t

Polynomials(u)

Polynomials(x)

WRONG

Interpretation of dynamics violation



MEMMO: Memory of Motion – www.memmo-project.eu

Example of jumping

Thanks Rohan for the illustration

Single Multiple
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Constraints: penalty and projection

min
𝑥 ,{𝑢}



𝑡=0

𝑇−1

𝑙 𝑥𝑡, 𝑢𝑡 + 𝑙𝑇 𝑥𝑇

s.t. t=0..T-1   𝑥t+1 = f(xt,ut )

t=0..T g(xt,ut )  0

60

By projection
SQP, active set

By penalty
Interior point, augmented 
lagrangian
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Model predictive control

 Closing the loop on the real robot

61

OCP
State

Control
Trajectory
Gains

Robot Torque reference
State reference
Currents

State estimate
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Importance of the warm start
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63
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THE END

63

Start to warm-up your fingers
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Take-home messages

Numerical problems (few/none discrete constraints)
- nonconvex … warm start needed

- very constrained … mostly feasibility problems

The formulation/transcription is our central problem
- expert+math knowledge

- keep generalization

Optimal control = reinforcement learning

- train offline

- generalize online


