
Crocoddyl: An Efficient Multi-Contact Optimal
Control Framework

Implementation and tutorial

Carlos Mastalli
University of Edinburgh

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 1 / 26

talos_jump-2

talos_jump-compressed.mp4
Media File (video/mp4)

anymal_jumping_obstacles.mp4
Media File (video/mp4)

Overview

1. Introduction

2. Core API 1.0
Exercise: unicycle towards the origin

3. Core API 2.0
Exercise: cartpole swing up

4. Contact dynamics API
Exercise: whole-body manipulation

5. More insight of optimal control
Exercise: bipedal walking (optional)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 2 / 26

Introduction

Introduction

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 3 / 26

https://github.com/loco-3d/crocoddyl

Introduction

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 3 / 26

https://github.com/loco-3d/crocoddyl

Introduction

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 3 / 26

https://github.com/loco-3d/crocoddyl

Introduction

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 3 / 26

https://github.com/loco-3d/crocoddyl

Introduction

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 3 / 26

https://github.com/loco-3d/crocoddyl

Introduction

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 3 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is versatile:

I various optimal control solvers

I single and multi-shooting methods

I analytical and sparse derivatives

I Euclidean and non-Euclidean geometry friendly

I autonomous and non-autonomous systems

I numerical and automatic differentiation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is versatile:

I various optimal control solvers

I single and multi-shooting methods

I analytical and sparse derivatives

I Euclidean and non-Euclidean geometry friendly

I autonomous and non-autonomous systems

I numerical and automatic differentiation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is versatile:

I various optimal control solvers

I single and multi-shooting methods

I analytical and sparse derivatives

I Euclidean and non-Euclidean geometry friendly

I autonomous and non-autonomous systems

I numerical and automatic differentiation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is versatile:

I various optimal control solvers

I single and multi-shooting methods

I analytical and sparse derivatives

I Euclidean and non-Euclidean geometry friendly

I autonomous and non-autonomous systems

I numerical and automatic differentiation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is versatile:

I various optimal control solvers

I single and multi-shooting methods

I analytical and sparse derivatives

I Euclidean and non-Euclidean geometry friendly

I autonomous and non-autonomous systems

I numerical and automatic differentiation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is versatile:

I various optimal control solvers

I single and multi-shooting methods

I analytical and sparse derivatives

I Euclidean and non-Euclidean geometry friendly

I autonomous and non-autonomous systems

I numerical and automatic differentiation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is efficient and flexible:

I cache friendly

I multi-thread friendly

I Python bindings (including models and solvers abstractions)

I C++ 98/11/14/17/20 compliant

I extensively tested

I automatic code generation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is efficient and flexible:

I cache friendly

I multi-thread friendly

I Python bindings (including models and solvers abstractions)

I C++ 98/11/14/17/20 compliant

I extensively tested

I automatic code generation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is efficient and flexible:

I cache friendly

I multi-thread friendly

I Python bindings (including models and solvers abstractions)

I C++ 98/11/14/17/20 compliant

I extensively tested

I automatic code generation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is efficient and flexible:

I cache friendly

I multi-thread friendly

I Python bindings (including models and solvers abstractions)

I C++ 98/11/14/17/20 compliant

I extensively tested

I automatic code generation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is efficient and flexible:

I cache friendly

I multi-thread friendly

I Python bindings (including models and solvers abstractions)

I C++ 98/11/14/17/20 compliant

I extensively tested

I automatic code generation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Main features

Crocoddyl is efficient and flexible:

I cache friendly

I multi-thread friendly

I Python bindings (including models and solvers abstractions)

I C++ 98/11/14/17/20 compliant

I extensively tested

I automatic code generation support

1https://github.com/loco-3d/crocoddyl

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 4 / 26

https://github.com/loco-3d/crocoddyl

Scope and Motivation

Fast whole-body model predictive control for legged robots
... to generate motion within the actuation limits

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 5 / 26

Scope and Motivation

Fast whole-body model predictive control for legged robots
... to regulate attitude in highly-dynamic maneuvers

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 5 / 26

Optimal control problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk)

s.t. xk+1 = fk(xk ,uk)

gk(xk ,uk) ≤ 0

xk ∈ X ,uk ∈ U

I terminal and running costs

I state lies in a differentiable manifold xi ∈ Q
I system dynamics

I path constraints

I state and control admissible sets

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 6 / 26

Optimal control problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk)

s.t. xk+1 = fk(xk ,uk)

gk(xk ,uk) ≤ 0

xk ∈ X ,uk ∈ U

I terminal and running costs

I state lies in a differentiable manifold xi ∈ Q

I system dynamics

I path constraints

I state and control admissible sets

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 6 / 26

Optimal control problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk)

s.t. xk+1 = fk(xk ,uk)

gk(xk ,uk) ≤ 0

xk ∈ X ,uk ∈ U

I terminal and running costs

I state lies in a differentiable manifold xi ∈ Q
I system dynamics

I path constraints

I state and control admissible sets

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 6 / 26

Optimal control problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk)

s.t. xk+1 = fk(xk ,uk)

gk(xk ,uk) ≤ 0

xk ∈ X ,uk ∈ U

I terminal and running costs

I state lies in a differentiable manifold xi ∈ Q
I system dynamics

I path constraints

I state and control admissible sets

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 6 / 26

Optimal control problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk)

s.t. xk+1 = fk(xk ,uk)

gk(xk ,uk) ≤ 0

xk ∈ X ,uk ∈ U

I terminal and running costs

I state lies in a differentiable manifold xi ∈ Q
I system dynamics

I path constraints

I state and control admissible sets

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 6 / 26

Core API 1.0

A Key Concept

To increase efficiency, we assume a Markovian problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk)

s.t. xk+1 = fk(xk ,uk)

gk(xk ,uk) ≤ 0

xk ∈ X ,uk ∈ U

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 7 / 26

A Key Concept

To increase efficiency, we assume a Markovian problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk)

s.t. xk+1 = fk(xk ,uk)

gk(xk ,uk) ≤ 0

xk ∈ X ,uk ∈ U

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 7 / 26

A Key Concept

To increase efficiency, we assume a Markovian problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk) (cost)

s.t. xk+1 = fk(xk ,uk) (dynamics)

gk(xk ,uk) ≤ 0 (constraints)

xk ∈ X ,uk ∈ U (bounds)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 7 / 26

A Key Concept

To increase efficiency, we assume a Markovian problem

min
X,U

lN(xN)+
N−1∑
k=0

lk(xk ,uk) (cost)

s.t. xk+1 = fk(xk ,uk) (dynamics)

gk(xk ,uk) ≤ 0 (constraints)

xk ∈ X ,uk ∈ U (bounds)

They are defined within the so-called action model.

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 7 / 26

A Key Concept

To increase efficiency, we assume a Markovian problem

action 0 action 1

action 2

tt0 t1 t2 t3

...

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 7 / 26

Action model

Main functions to implement for an action model

I calc: forward simulation

I calcDiff: backward propagation

import crocoddyl

import numpy as np

model = crocoddyl.ActionModelUnicycle ()

data = model.createData ()

x = model.state.rand()

u = np.random.rand(model.nu)

model.calc(data , x, u)

print data.xnext # next state

print data.cost # cost value

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 8 / 26

Action model

Main functions to implement for an action model

I calc: forward simulation

I calcDiff: backward propagation

import crocoddyl

import numpy as np

model = crocoddyl.ActionModelUnicycle ()

data = model.createData ()

x = model.state.rand()

u = np.random.rand(model.nu)

model.calc(data , x, u)

model.calcDiff(data , x, u)

print data.Fx , data.Fu # dynamics derivatives

print data.Lx , data.Lu , data.Lxx , data.Lxu , data.Luu # cost derivatives

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 8 / 26

Deriving an unicycle action model

import crocoddyl as croco

import numpy as np

class Unicycle(croco.ActionModelAbstract):

def __init__(self):

croco.ActionModelAbstract.__init__(self , croco.StateVector(3), 2, 5)

self.dt , self.w_x , self.w_u = .1, 10., 1.

def calc(self , data , x, u):

px, py , theta , v, w = x, u

c, s, dt = np.cos(theta), np.sin(theta), self.dt

data.xnext[:] = np.array([[px + c * v * dt],

[py + s * v * dt],

[theta + w * dt]])

data.r[:3], data.r[3:] = self.w_x * x, self.w_u * u

data.cost = .5 * sum(data.r** 2)

def calcDiff(self , data , x, u):

px, py , theta , v, w = x, u

c, s, dt, = np.cos(theta), np.sin(theta), self.dt

nx, nu = self.state.nx , self.nu

data.Fx[:, :] = np.array([[1, 0, -s * v * dt],

[0, 1, c * v * dt],

[0, 0, 1]])

data.Fu[:, :] = np.array([[c * dt , 0], [s * dt , 0], [0, dt]])

data.Lx[:] = x * ([self.w_x ** 2] * nx)

data.Lu[:] = u * ([self.w_u ** 2] * nu)

data.Lxx[range(nx), range(nx)] = [self.w_x **2] * nx

data.Luu[range(nu), range(nu)] = [self.w_u **2] * nu

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 9 / 26

State

It defines the differential state manifold:

I diff: x1	x2

I integrate: x0⊕δx
I Jacobians of the operators

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 10 / 26

State

It defines the differential state manifold:

I diff: x1	x2

I integrate: x0⊕δx

I Jacobians of the operators

import crocoddyl

nx = 3 # state dimension

state = crocoddyl.StateVector(nx)

x0 = state.rand() # state.zero ()

x1 = state.rand()

dx = state.diff(x0 , x1)

x2 = state.integrate(x0 , dx)

print dx

print x2 # Equals to x1

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 10 / 26

State

It defines the differential state manifold:
I diff: x1	x2

I integrate: x0⊕δx
I Jacobians of the operators

import crocoddyl

nx = 3 # state dimension

state = crocoddyl.StateVector(nx)

x0 = state.rand() # state.zero ()

x1 = state.rand()

dx = state.diff(x0 , x1)

x2 = state.integrate(x0 , dx)

print dx

print x2 # Equals to x1

ddiff_x0 , ddiff_x1 = state.Jdiff(x0, x1)

dint_x0 , dint_dx = state.Jintegrate(x0 , dx)

print ddiff_x0 , ddiff_x1

print dint_x0 , dint_dx

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 10 / 26

Solving an optimal control problem

The problem formulation and its resolution are decoupled

import crocoddyl

N = 10 # horizon

model = crocoddyl.ActionModelUnicycle ()

x0 = model.state.rand()

problem = crocoddyl.ShootingProblem(x0, [model] * N, model)

fddp = crocoddyl.SolverFDDP(problem) # feasibility -driven DDP (more information

in https :// cmastalli .github.io/

publications / crocoddyl20icra .pdf)

fddp.setCallbacks([crocoddyl.CallbackVerbose ()])

fddp.solve() # to warm -start the solver use fddp.solve(xs , us)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 11 / 26

Core API 1.0:

Unicycle towards the origin

Unicycle towards the origin

The objective are:

I Get more familiar with Crocoddyl API

I Understand how the cost weights affect the problem resolution

More instructions in the following Jupyter notebook:

https://github.com/loco-3d/crocoddyl/blob/master/

examples/notebooks/unicycle_towards_origin.ipynb

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 12 / 26

https://github.com/loco-3d/crocoddyl/blob/master/examples/notebooks/unicycle_towards_origin.ipynb
https://github.com/loco-3d/crocoddyl/blob/master/examples/notebooks/unicycle_towards_origin.ipynb

Core API 2.0

Developing a new solver

1

backward pass

forward pass

Blue curves represents the level-set of the cost function

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 13 / 26

Developing a new solver

1
2

backward pass

forward pass

Black curve represents the system dynamics (equality constraint)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 13 / 26

Developing a new solver

1
2
3

backward pass

forward pass

Search direction is computed from the problem derivatives (arrow)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 13 / 26

Developing a new solver

1
2
3

4

backward pass

forward pass

An expected-improvement procedure evaluates the direction given a

defined step length

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 13 / 26

Developing a new solver

1
2
3

4

5

backward pass

forward pass

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 13 / 26

Developing a new solver

There are a few dedicated functions needed to implement a new
solver

import crocoddyl

class MyNewSolver(crocoddyl.SolverAbstract):

def __init__(self , problem):

crocoddyl.SolverAbstract.__init__(self , problem)

initialize my stuffs

def solve(self , init_xs=[], init_us=[], maxiter=100 , isFeasible=False ,

regInit=None):

self.setCandidate(init_xs , init_us , isFeasible)

run self. computeDirection and self.tryStep

def computeDirection(self , recalc=True):

compute the search direction , recalc=True updates derivatives

def tryStep(self , stepLength=1):

try the search direction computed by self. computeDirection

def expectedImprovement(self):

compute the expected improvement of the iteration

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 14 / 26

Differential action model

It describes a time-continuous action model

import crocoddyl

nq, nu = 3, 2

model = crocoddyl.DifferentialActionModelLQR(nq, nu)

data = model.createData ()

x = model.state.rand()

u = np.random.rand(model.nu)

model.calc(data , x, u)

print data.xout # next state

print data.cost # cost value

model.calcDiff(data , x, u)

print data.Fx , data.Fu # dynamics derivatives

print data.Lx , data.Lu , data.Lxx , data.Lxu , data.Luu # cost derivatives

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 15 / 26

Integrated action model

And we can combine it with any integration scheme (integral cost
and dynamics)

import crocoddyl

nq, nu = 3, 2

dt = 1e-3

diffModel = crocoddyl.DifferentialActionModelLQR(nq, nu)

model = crocoddyl.IntegratedActionModelEuler(model , dt)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 16 / 26

Integrated action model

And we can combine it with any integration scheme (integral cost
and dynamics)

import crocoddyl

nq, nu = 3, 2

dt = 1e-3

diffModel = crocoddyl.DifferentialActionModelLQR(nq, nu)

model = crocoddyl.IntegratedActionModelEuler(model , dt)

It is possible to derive new differential and integrated action
models as for action models

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 16 / 26

Core API 2.0:

Cartpole swing up

Cartpole swing up

The objective are:

I Get more familiar with Crocoddyl API

I Learn how to implement a differential action model

More instructions in the following Jupyter notebook:

https://github.com/loco-3d/crocoddyl/blob/master/

examples/notebooks/cartpole_swing_up.ipynb

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 17 / 26

https://github.com/loco-3d/crocoddyl/blob/master/examples/notebooks/cartpole_swing_up.ipynb
https://github.com/loco-3d/crocoddyl/blob/master/examples/notebooks/cartpole_swing_up.ipynb

Contact dynamics API

Multi-contact optimal control

min
xs ,us

lN(xN)+
N−1∑
k=0

∫ tk+∆tk

tk

lk(xk ,uk ,λk)dt

s.t. qk+1 = qk⊕
∫ tk+∆tk

tk

vk+1 dt, (integrator)

vk+1 = vk +

∫ tk+∆tk

tk

v̇k dt,[
v̇k
−λk

]
=

[
M J>c
Jc 0

]−1 [
τ b

−a0

]
, (contact dynamics)

RλC(k) ≤ r, (friction-cone)

log (pG(k)(qk)−1oMfG(k)
) = 0, (contact placement)

x̄ ≤ xk ≤ x, (state bounds)

ū ≤ uk ≤ u, (control bounds)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 18 / 26

Multi-contact optimal control

min
xs ,us

lN(xN)+
N−1∑
k=0

∫ tk+∆tk

tk

lk(xk ,uk ,λk)dt

s.t. qk+1 = qk⊕
∫ tk+∆tk

tk

vk+1 dt, (integrator)

vk+1 = vk +

∫ tk+∆tk

tk

v̇k dt,[
v̇k
−λk

]
=

[
M J>c
Jc 0

]−1 [
τ b

−a0

]
, (contact dynamics)

RλC(k) ≤ r, (friction-cone)

log (pG(k)(qk)−1oMfG(k)
) = 0, (contact placement)

x̄ ≤ xk ≤ x, (state bounds)

ū ≤ uk ≤ u, (control bounds)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 18 / 26

Multi-contact optimal control

min
xs ,us

lN(xN)+
N−1∑
k=0

∫ tk+∆tk

tk

lk(xk ,uk ,λk)dt

s.t. qk+1 = qk⊕
∫ tk+∆tk

tk

vk+1 dt, (integrator)

vk+1 = vk +

∫ tk+∆tk

tk

v̇k dt,[
v̇k
−λk

]
=

[
M J>c
Jc 0

]−1 [
τ b

−a0

]
, (contact dynamics)

RλC(k) ≤ r, (friction-cone)

log (pG(k)(qk)−1oMfG(k)
) = 0, (contact placement)

x̄ ≤ xk ≤ x, (state bounds)

ū ≤ uk ≤ u, (control bounds)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 18 / 26

Multi-contact optimal control

min
xs ,us

lN(xN)+
N−1∑
k=0

∫ tk+∆tk

tk

lk(xk ,uk ,λk)dt

s.t. qk+1 = qk⊕
∫ tk+∆tk

tk

vk+1 dt, (integrator)

vk+1 = vk +

∫ tk+∆tk

tk

v̇k dt,[
v̇k
−λk

]
=

[
M J>c
Jc 0

]−1 [
τ b

−a0

]
, (contact dynamics)

RλC(k) ≤ r, (friction-cone)

log (pG(k)(qk)−1oMfG(k)
) = 0, (contact placement)

x̄ ≤ xk ≤ x, (state bounds)

ū ≤ uk ≤ u, (control bounds)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 18 / 26

Contact dynamics

[
v̇k
−λk

]
=

[
M J>c
Jc 0

]−1 [
τ b

−a0

]
import crocoddyl as croco

import pinocchio as pin

import example_robot_data as robots

rmodel = robots.loadICub ().model

state = croco.StateMultibody(rmodel)

actuation = croco.ActuationModelFloatingBase(state)

contacts = croco.ContactModelMultiple(state , actuation.nu)

costs = croco.CostModelSum(state , actuation.nu)

... define contacts and costs

model = croco.DifferentialActionModelContactFwdDynamics(state , actuation ,

contacts , costs , 0., True)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 19 / 26

Contact dynamics

[
v̇k
−λk

]
=

[
M J>c
Jc 0

]−1 [
τ b

−a0

]
Defining the contact frames

Mref = croco.FramePlacement(rmodel.getFrameId("r_sole"), pin.SE3.Random ())

xref = croco.FrameTranslation(rmodel.getFrameId("l_sole"), pin.SE3.Random ().

translation)

contact_6d = croco.ContactModel6D(state , Mref , actuation.nu)

contact_3d = croco.ContactModel3D(state , xref , actuation.nu)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 19 / 26

Cost functions

A cost is described by a residual vector r(·) and an activation
function a(·):

l(x,u) = a(r(x,u))

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 20 / 26

Cost functions

A cost is described by a residual vector r(·) and an activation
function a(·):

l(x,u) = a(r(x,u))

There are a few activation functions available:

I (Weighted) Quadratic

I (Weighted) Quadratic barriers

I Smooth abs

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 20 / 26

Cost functions

A cost is described by a residual vector r(·) and an activation
function a(·):

l(x,u) = a(r(x,u))

There are a few activation functions available:

I (Weighted) Quadratic

I (Weighted) Quadratic barriers

I Smooth abs

There is a range of different cost functions:

I State and control

I Frame placement, translation, rotation, velocity

I CoM

I Centroidal momentum and forces

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 20 / 26

Cost functions

A cost is described by a residual vector r(·) and an activation
function a(·):

l(x,u) = a(r(x,u))

Define CoM cost function

cref = np.array([0., 0., 1.])

comTrack = croco.CostModelCoMPosition(state , cref , actuation.nu)

costModel.addCost("comTrack", comTrack , 1e3)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 20 / 26

Friction cone and contact placement penalization

We could define soft-constraints using, for instances, quadratic
barriers:

Friction cone
RλC(k) ≤ r

Defining friction cone soft - constraint

nsurf , mu = np.array([0., 0., 1.]), 0.7

frictionCone = croco.FrictionCone(nsurf , mu, 4, False)

bounds = croco.ActivationBounds(frictionCone.lb , frictionCone.ub) # magic here

activation = croco.ActivationModelQuadraticBarrier(bounds)

frFriction = croco.FrameFrictionCone(rmodel.getFrameId("r_sole"), frictionCone)

frictionCost = croco.CostModelContactFrictionCone(state , activation , frFriction ,

actuation.nu)

costs.addCost("r_sole_frictionCone", frictionCost , 1e3)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 21 / 26

Friction cone and contact placement penalization

We could define soft-constraints using, for instances, quadratic
barriers:

Contact placement

log (pG(k)(qk)−1oMfG(k)
) = 0

Defining a contact placement soft - constraint

xref = croco.FrameTranslation(rmodel.getFrameId("l_sole"), Mref.translation)

placementCost = croco.CostModelFrameTranslation(state , xref , actuation.nu)

costModel.addCost("l_sole_footPlacement", placementCost , 1e6)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 21 / 26

Contact dynamics API:

Whole-body manipulation

Whole-body manipulation

The objective are:

I Get more familiar with Contact dynamics API

I Understand how to build a whole-body manipulation problem

More instructions in the following Jupyter notebook:

https://github.com/loco-3d/crocoddyl/blob/master/

examples/notebooks/whole_body_manipulation.ipynb

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 22 / 26

https://github.com/loco-3d/crocoddyl/blob/master/examples/notebooks/whole_body_manipulation.ipynb
https://github.com/loco-3d/crocoddyl/blob/master/examples/notebooks/whole_body_manipulation.ipynb

Optimal Control Families

I Indirect Methods (Pontryagin’s Minimum Principle (PMP))
I Hamiltonian: H(x,λ,u) = l(x,u)+λ>f(x,u)

I Get optimal control input:

u(x,λ) = arg minu H(x,λ,u) s.t. g(x,u) ≤ 0

I State-costate integration:

State: ẋ = f(x,u), x(t0) = x0

Costate: λ̇ = −∇xH(x,λ,u), λ(tN) = lN(xN)

I Direct Methods (Transcription to NLP)
Solve the resulting NL program

min
xs ,us

φ(xs ,us)

s.t. g(xs ,us) = 0,

h(xs ,us) ≤ 0,

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 23 / 26

Optimal Control Families

I Indirect Methods (Pontryagin’s Minimum Principle (PMP))
I Hamiltonian: H(x,λ,u) = l(x,u)+λ>f(x,u)

I Get optimal control input:

u(x,λ) = arg minu H(x,λ,u) s.t. g(x,u) ≤ 0

I State-costate integration:

State: ẋ = f(x,u), x(t0) = x0

Costate: λ̇ = −∇xH(x,λ,u), λ(tN) = lN(xN)

I Direct Methods (Transcription to NLP)
Solve the resulting NL program

min
xs ,us

φ(xs ,us)

s.t. g(xs ,us) = 0,

h(xs ,us) ≤ 0,

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 23 / 26

Optimal Control Families

I Indirect Methods (Pontryagin’s Minimum Principle (PMP))
I Hamiltonian: H(x,λ,u) = l(x,u)+λ>f(x,u)

I Get optimal control input:

u(x,λ) = arg minu H(x,λ,u) s.t. g(x,u) ≤ 0

I State-costate integration:

State: ẋ = f(x,u), x(t0) = x0

Costate: λ̇ = −∇xH(x,λ,u), λ(tN) = lN(xN)

I Direct Methods (Transcription to NLP)
Solve the resulting NL program

min
xs ,us

φ(xs ,us)

s.t. g(xs ,us) = 0,

h(xs ,us) ≤ 0,

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 23 / 26

Optimal Control Families

I Indirect Methods (Pontryagin’s Minimum Principle (PMP))
I Hamiltonian: H(x,λ,u) = l(x,u)+λ>f(x,u)

I Get optimal control input:

u(x,λ) = arg minu H(x,λ,u) s.t. g(x,u) ≤ 0

I State-costate integration:

State: ẋ = f(x,u), x(t0) = x0

Costate: λ̇ = −∇xH(x,λ,u), λ(tN) = lN(xN)

I Direct Methods (Transcription to NLP)
Solve the resulting NL program

min
xs ,us

φ(xs ,us)

s.t. g(xs ,us) = 0,

h(xs ,us) ≤ 0,

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 23 / 26

Optimal Control Families

I Indirect Methods (Pontryagin’s Minimum Principle (PMP))
I Hamiltonian: H(x,λ,u) = l(x,u)+λ>f(x,u)

I Get optimal control input:

u(x,λ) = arg minu H(x,λ,u) s.t. g(x,u) ≤ 0

I State-costate integration:

State: ẋ = f(x,u), x(t0) = x0

Costate: λ̇ = −∇xH(x,λ,u), λ(tN) = lN(xN)

I Direct Methods (Transcription to NLP)
Solve the resulting NL program

min
xs ,us

φ(xs ,us)

s.t. g(xs ,us) = 0,

h(xs ,us) ≤ 0,

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 23 / 26

Classical DDP vs Direct Method (SQP)

Faster iteration, feedback policy

[
Xi+1

Ui+1

]
=

[
Xi

Ui

]
+α

[
δXi

δUi

] KKT matrix

NLP

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Faster iteration, feedback policy

[
Xi+1

Ui+1

]
=

[
Xi

Ui

]
+α

[
δXi

δUi

] KKT matrix

NLP

DDP

Matrix factorization is O(n3)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Faster iteration, feedback policy

[
Xi+1

Ui+1

]
=

[
Xi

Ui

]
+α

[
δXi

δUi

] KKT matrix

...

NLP

DDP

Matrix factorization is O(n3)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Slower convergence, poor globalization

DDP SQP

1

1

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Slower convergence, poor globalization

DDP SQP

1
2

1

2

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Slower convergence, poor globalization

DDP SQP

1
2
3 1

2
3

A merit function (SQP) accepts some constraint violations

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Slower convergence, poor globalization

DDP SQP

1
2
3

4
1

2
3

4

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Slower convergence, poor globalization

DDP SQP

1
2
3

4

5
1

2
3

4 5

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Slower convergence, poor globalization

DDP SQP

1
2
3

4

5 6
1

2
3

4 5 6

Nonlinear rollout (DDP) does small steps due to constraint satisfaction

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Classical DDP vs Direct Method (SQP)

Single shooting, control warm-start

forward pass

backward pass

forward pass

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 24 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian
I PMP to each simpler problem
I State-costate integration

Optimal
trajectory

Optimal too!

uN(xN ,λN) = arg min
uN

HN(xN ,λN ,uN) s.t. gN(xN ,uN) ≤ 0

...
u0(x0,λ0) = arg min

u0

H0(x0,λ0,u0) s.t. g0(x0,u0) ≤ 0

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian
I PMP to each simpler problem
I State-costate integration

Optimal
trajectory

Optimal too!

uN(xN ,λN) = arg min
uN

HN(xN ,λN ,uN) s.t. gN(xN ,uN) ≤ 0

...
u0(x0,λ0) = arg min

u0

H0(x0,λ0,u0) s.t. g0(x0,u0) ≤ 0

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

Hk(·) =
1

2

[
1

δxk+1

]> [
0 V>xk+1

Vxk+1
Vxxk+1

] [
1

δxk+1

]

+
1

2

 1
δxk
δuk

> 0 l>xk l>uk

lxk lxxk lxuk

luk
l>xuk

luuk

 1
δxk
δuk

 ,

where Vxk ,Vxxk describe the costate λk .

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

Hk(·) =
1

2

[
1

δxk+1

]> [
0 V>xk+1

Vxk+1
Vxxk+1

] [
1

δxk+1

]

+
1

2

 1
δxk
δuk

> 0 l>xk l>uk

lxk lxxk lxuk

luk
l>xuk

luuk

 1
δxk
δuk

 ,

where Vxk ,Vxxk describe the costate λk .

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

δu∗k(δxk) =

arg min
δuk

Hamiltonian=H(δxk ,Vxk
,Vxxk

,δuk ,k)︷ ︸︸ ︷
1

2

 1
δxk
δuk

> 0 Q>xk Q>uk

Qxk Qxxk Qxuk

Quk
Q>xuk

Quuk

 1
δxk
δuk

,
s.t. g(xk⊕δxk ,uk +δuk) ≤ 0, (path constraints)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

State integration (forward pass):

xi+1
0 = x̄0 (initial condition)

ui+1
k = ui

k +δui
k (PMP solution)

xi+1
k+1 = f(xi+1

k ,ui+1
k) (rollout)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

State integration (forward pass):

xi+1
0 = x̄0 (initial condition)

ui+1
k = ui

k +δui
k (PMP solution)

xi+1
k+1 = f(xi+1

k ,ui+1
k) (rollout)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

State integration (forward pass):

xi+1
0 = x̄0 (initial condition)

ui+1
k = ui

k +δui
k (PMP solution)

xi+1
k+1 = f(xi+1

k ,ui+1
k) (rollout)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

Costate integration (backward pass):

VxN , VxxN = lxN , lxxN (terminal condition)

Vxi = Qxi−Qxui Q
−1
uui

Qui (costate Jacobian)

Vxxi = Qxxi−Qxui Q
−1
uui

Quxi (costate Hessian)

dV = −1

2
Q>ui

Q−1
uui

Qui (costate rate)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

Costate integration (backward pass):

VxN , VxxN = lxN , lxxN (terminal condition)

Vxi = Qxi−Qxui Q
−1
uui

Qui (costate Jacobian)

Vxxi = Qxxi−Qxui Q
−1
uui

Quxi (costate Hessian)

dV = −1

2
Q>ui

Q−1
uui

Qui (costate rate)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Understanding the classical DDP

I Sequence of simpler Hamiltonian (Bellman)

I LQ apprx. of the Hamiltonian

I PMP to each simpler problem

I State-costate integration

Costate integration (backward pass):

VxN , VxxN = lxN , lxxN (terminal condition)

Vxi = Qxi−Qxui Q
−1
uui

Qui (costate Jacobian)

Vxxi = Qxxi−Qxui Q
−1
uui

Quxi (costate Hessian)

dV = −1

2
Q>ui

Q−1
uui

Qui (costate rate)

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 25 / 26

Contact dynamics API:

Bipedal walking

Bipedal walking

The objective is:

I Understand how to the multi-contact locomotion is affected
by changes in the step timings

More instructions in the following Jupyter notebook:

https://github.com/loco-3d/crocoddyl/blob/master/

examples/notebooks/bipedal_walking.ipynb

Carlos Mastalli University of Edinburgh Crocoddyl: Multi-Contact Optimal Control 26 / 26

https://github.com/loco-3d/crocoddyl/blob/master/examples/notebooks/bipedal_walking.ipynb
https://github.com/loco-3d/crocoddyl/blob/master/examples/notebooks/bipedal_walking.ipynb

	Introduction
	Core API 1.0
	Exercise: unicycle towards the origin

	Core API 2.0
	Exercise: cartpole swing up

	Contact dynamics API
	Exercise: whole-body manipulation

	More insight of optimal control
	Exercise: bipedal walking (optional)

