Contact Dynamics in Robotics
 Modeling and efficient resolution

Memmo Summer School

Justin Carpentier
Researcher, INRIA and ENS, Paris
PR[AI]RIE
ENS

Contact: the Physical Problem

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

Contact: the Physical Problem

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

Contact: the Physical Problem

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

$\underset{\substack{\text { Mass } \\ \text { Matrix }}}{M(q) \ddot{q}}+\underset{\substack{\text { Coriolis } \\ \text { centrifugal }}}{C(q, \dot{q})}+\underset{\text { Gravity }}{ }=\underset{\substack{\text { Motor } \\ \text { torque }}}{\tau}$

Contact: the Physical Problem

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

$$
\underset{\substack{\text { Mass } \\ \text { Matrix }}}{M(q)} \ddot{q}+\underset{\substack{\text { Coriolis } \\ \text { centrifugal }}}{C(q, \dot{q})}+\underset{\text { Gravity }}{G(q)}=\underset{\substack{\text { Motor } \\ \text { torque }}}{\tau}
$$

Contact: the Physical Problem

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

$$
\begin{array}{ccc}
M(q) \ddot{q} \\
M
\end{array} \underset{\substack{\text { Mass } \\
\text { Matrix } \\
\text { centrififisal }}}{C(q, \dot{q})}+\underset{\text { Gravity }}{\substack{\text { Motor } \\
\text { torque }}} \underset{\substack{\text { External } \\
\text { forces }}}{ }
$$

The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree
Rigid Body Dynamics Algorithms

$$
\ddot{q}=\text { ForwardDynamics }\left(q, \dot{q}, \tau, \lambda_{c}\right)
$$

Simulation
Control

$$
\tau=\text { InverseDynamics }\left(q, \dot{q}, \ddot{q}, \lambda_{c}\right)
$$

The Recursive Newton-Euler Algorithm

$$
\underset{\substack{\text { Mass } \\ \text { Matrix }}}{M(q) \ddot{q}+\underset{\substack{\text { Coriolis } \\ \text { centrifugal }}}{C(q, \dot{q})+G(q)=} \underset{\substack{\text { Motor } \\ \text { Gravity }}}{\substack{\text { torque }}} \underset{c}{J_{c}^{\top}}(q) \lambda_{c}}
$$

The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree
Rigid Body Dynamics Algorithms
The Articulated Body Algorithm

$$
\ddot{q}=\text { ForwardDynamics }\left(q, \dot{q}, \tau, \lambda_{c}\right)
$$

Roy Featherstone

Simulation
Roy Featherstone
Control

$$
\tau=\text { InverseDynamics }\left(q, \dot{q}, \ddot{q}, \lambda_{c}\right)
$$

The Recursive Newton-Euler Algorithm

$$
\underset{\substack{\text { Mass } \\ \text { Matrix }}}{M(q) \ddot{q}}+\underset{\substack{\text { Coriolis } \\ \text { centrifugal }}}{C(q, \dot{q})}+\underset{\substack{\text { Gravity }}}{\substack{\text { Motor } \\ \text { torque }}} \underset{\substack{\text { External } \\ \text { forces }}}{J_{c}^{\top}(q) \lambda_{c}}
$$

Gaol of this class

Understand the various approaches of the state of the art to compute λ_{c} in:

$$
M(q) \ddot{q}+C(q, \dot{q})+G(q)=\tau+J_{c}^{\top}(q) \lambda_{c}
$$

contact/interaction forces

Gaol of this class

Understand the various approaches of the state of the art to compute λ_{c} in:

$$
M(q) \ddot{q}+C(q, \dot{q})+G(q)=\tau+J_{c}^{\top}(q) \lambda_{c}
$$

contact/interaction forces

Gaol of this class

Understand the various approaches of the state of the art to compute λ_{c} in:

$$
M(q) \ddot{q}+C(q, \dot{q})+G(q)=\tau+J_{c}^{\top}(q) \lambda_{c}
$$

contact/interaction forces

Gaol of this class

Understand the various approaches of the state of the art to compute λ_{c} in:

$$
M(q) \ddot{q}+C(q, \dot{q})+G(q)=\tau+J_{c}^{\top}(q) \lambda_{c}
$$

Rigid contact

> bilateral contact model
> unilateral contact model

contact/interaction forces

Gaol of this class

Understand the various approaches of the state of the art to compute λ_{c} in:

$$
M(q) \ddot{q}+C(q, \dot{q})+G(q)=\tau+J_{c}^{\top}(q) \lambda_{c}
$$

Soft contact spring-damper model

Rigid contact
bilateral contact model
Mixed contact the relaxed contact model

contact/interaction forces

The Soft Contact Problem

Soft contact: the spring-damper model

This is the simplest contact model, very intuitive and straightforward to implement

This contact model is defined by the spring k and the damper d quantities, reading:

$$
\lambda_{c}^{n}=\max (-k \cdot p-d \cdot \dot{p}, 0)
$$

Soft contact: the spring-damper model

This is the simplest contact model, very intuitive and straightforward to implement

BUT

not relevant to model rigid interface $(k \rightarrow \infty)$, requires stable integrator (stiff equation)

The Rigid Contact Problem

 bilateral contacts
The Least-Action Principle

"Nature is thrifty in all its actions"

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

Pierre-Louis Maupertuis

The Least-Action Principle

"Nature is thrifty in all its actions"

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

Pierre-Louis Maupertuis In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

$$
S_{1}=\int_{t 1}^{t 2} \frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}-m g x d t
$$

The Least-Action Principle

"Nature is thrifty in all its actions"

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

Pierre-Louis Maupertuis In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

$$
S_{1}=\int_{t 1}^{t 2} \frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}-m g x d t
$$

$$
S_{2}=\int_{t 1}^{t 2} \frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}-m g x d t
$$

The Least-Action Principle

"Nature is thrifty in all its actions"

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

Pierre-Louis Maupertuis In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

$$
S_{1}=\int_{t 1}^{t 2} \frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}-m g x d t
$$

The Least Action Principle as a classic QP

where $\ddot{q}_{f} \stackrel{\text { def }}{=} M^{-1}(q)(\tau-C(q, \dot{q})-G(q))$ is the so-called free acceleration (without constraint)

The Least Action Principle as a classic QP

where $\ddot{q}_{f} \stackrel{\text { def }}{=} M^{-1}(q)(\tau-C(q, \dot{q})-G(q))$ is the so-called free acceleration (without constraint)

The Least Action Principle as a classic QP

least distance w.r.t to the unconstrained acceleration
a metric induced by the

$$
\begin{aligned}
& \min _{\ddot{q}} \frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2} \quad \min _{\ddot{q}} \frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2} \\
& c(q)=0 \begin{array}{ll}
\begin{array}{l}
\text { gap between } \\
\text { floor and foot }
\end{array} \quad \text { index reduction }
\end{array} c(q)=0 \\
& \begin{array}{c}
\substack{\text { index reduction } \\
\text { time derivation }}
\end{array} \longrightarrow J_{c}(q) \dot{q}=0
\end{aligned}
$$

where $\ddot{q}_{f} \stackrel{\text { def }}{=} M^{-1}(q)(\tau-C(q, \dot{q})-G(q))$ is the so-called free acceleration (without constraint)

The Least Action Principle as a classic QP

where $\ddot{q}_{f} \stackrel{\text { def }}{=} M^{-1}(q)(\tau-C(q, \dot{q})-G(q))$ is the so-called free acceleration (without constraint)

The Least Action Principle as a classic QP

Problem: we have now formed an equality-constrained QP.

$$
\begin{array}{ll}
\min _{\ddot{q}} & \frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2} \\
& J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})=0
\end{array}
$$

How to solve it? Where do the contact forces lie?

The Least Action Principle as a classic QP

Problem: we have now formed an equality-constrained QP.

$$
\begin{array}{ll}
\min _{\ddot{q}} & \frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2} \\
& J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})=0
\end{array}
$$

How to solve it? Where do the contact forces lie?

The solution can be retrieved by deriving the KKT conditions of the QP problem via the so-called Lagrangian:

dual variable $=$ contact forces

$$
L\left(\ddot{q}, \lambda_{c}\right)=\underbrace{\frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2}}_{\text {cost function }}-\sqrt{\lambda_{c}^{\top}} \underbrace{\left(J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})\right)}_{\text {equality constraint }}
$$

Solving the Lagrangian contact problem

dual variable $=$ contact forces

$$
L\left(\ddot{q}, \lambda_{c}\right)=\underbrace{\frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2}}_{\text {cost function }}-\sqrt{\lambda_{c}^{\top}} \underbrace{\left(J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})\right)}_{\text {equality constraint }}
$$

Solving the Lagrangian contact problem

dual variable = contact forces

$$
L\left(\ddot{q}, \lambda_{c}\right)=\underbrace{\frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2}}_{\text {cost tunction }}-\underbrace{\lambda_{c}^{\top}}_{\text {equality constraint }}(\underbrace{\left.J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})\right)}_{c}
$$

The KKT conditions of the QP problem are given by:

$$
\begin{aligned}
\nabla_{\ddot{q}} L & =M(q)\left(\ddot{q}-\ddot{q}_{f}\right)-J_{c}(q)^{\top} \lambda_{c} & & =0 \\
\nabla_{\lambda_{c}} L & =J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q}) & & =0
\end{aligned}
$$

Solving the Lagrangian contact problem

dual variable = contact forces

$$
L\left(\ddot{q}, \lambda_{c}\right)=\underbrace{\frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2}}_{\text {cost function }}-\Gamma_{c}^{\lambda_{c}^{\top}}(\underbrace{\left.J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})\right)}_{\text {equality constraint }}
$$

The KKT conditions of the QP problem are given by:

$$
\begin{array}{rlrl}
\nabla_{\ddot{q}} L & =M(q)\left(\ddot{q}-\ddot{q}_{f}\right)-J_{c}(q)^{\top} \lambda_{c} & & =0 \\
& & \text { Joint space force propagation } \\
\nabla_{\lambda_{c}} L & =J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q}) & & =0
\end{array} \quad \begin{gathered}
\text { Contact acceleration constraint }
\end{gathered}
$$

rearranging a bit the terms, leads to:

$$
\begin{aligned}
M(q) \ddot{q}-J_{c}(q)^{\top} \lambda_{c} & =M(q) \ddot{q}_{f} \\
J_{c}(q) \ddot{q}+0 & =-\gamma_{c}(q, \dot{q})
\end{aligned}
$$

Solving the Lagrangian contact problem

dual variable $=$ contact forces

$$
L\left(\ddot{q}, \lambda_{c}\right)=\underbrace{\frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2}}_{\text {cost function }}-\sqrt{\lambda_{c}^{\top}}(\underbrace{\left.J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})\right)}_{\text {equality constraint }}
$$

The KKT conditions of the QP problem are given by:

$$
\begin{array}{rlrl}
\nabla_{\ddot{q}} L & =M(q)\left(\ddot{q}-\ddot{q}_{f}\right)-J_{c}(q)^{\top} \lambda_{c} & & =0 \\
\nabla_{\lambda_{c}} L & =J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q}) & & \text { Joint space force propagation } \\
& =0 & \text { Contact acceleration constraint }
\end{array}
$$

rearranging a bit the terms, leads to:

$$
\begin{aligned}
M(q) \ddot{q}-J_{c}(q)^{\top} \lambda_{c} & =M(q) \ddot{q}_{f} \\
J_{c}(q) \ddot{q}+0 & =-\gamma_{c}(q, \dot{q})
\end{aligned}
$$

leading to the so-called KKT dynamics:

$$
\left[\begin{array}{cc}
M(q) & J_{c}^{\top}(q) \\
J_{c}(q) & 0
\end{array}\right]\left[\begin{array}{r}
\ddot{q} \\
-\lambda_{c}
\end{array}\right]=\left[\begin{array}{r}
M(q) \ddot{q}_{f} \\
-\gamma_{c}(q, \dot{q})
\end{array}\right]
$$

Solving the Lagrangian contact problem

dual variable $=$ contact forces

$$
L\left(\ddot{q}, \lambda_{c}\right)=\underbrace{\frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2}}_{\text {cost function }}-{ }^{\ulcorner } \lambda_{c}^{\top}(\underbrace{\left.J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})\right)}_{\text {equality constraint }}
$$

The KKT conditions of the QP problem are given by:

$$
\begin{array}{lll}
\nabla_{\ddot{q}} L=M(q)\left(\ddot{q}-\ddot{q}_{f}\right)-J_{c}(q)^{\top} \lambda_{c} & =0 & \text { Joint space force propagation } \\
\nabla_{\lambda_{c}} L=J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q}) & =0 & \text { Contact acceleration constraint }
\end{array}
$$

rearranging a bit the terms, leads to:

$$
\begin{aligned}
M(q) \ddot{q}-J_{c}(q)^{\top} \lambda_{c} & =M(q) \ddot{q}_{f} \\
J_{c}(q) \ddot{q}+0 & =-\gamma_{c}(q, \dot{q})
\end{aligned}
$$

leading to the so-called KKT dynamics:

$$
\left[\begin{array}{cc}
M(q) & J_{c}^{\top}(q) \\
J_{c}(q) & 0
\end{array}\right]\left[\begin{array}{r}
\ddot{q} \\
-\lambda_{c}
\end{array}\right]=\left[\begin{array}{r}
M(q) \ddot{q}_{f} \\
-\gamma_{c}(q, \dot{q})
\end{array}\right]
$$

$$
K(q)
$$

BUT, there might be one, redundant solutions or no solution at all:
wether (i) $J_{c}(q)$ is full rank (ii) $J_{c}(q)$ is not full rank or (ii) $\gamma_{c}(q, \dot{q})$ is not in the range space of $J_{c}(q)$

Explicit contact solution

We can analytically inverse the system
to obtain the solution in 3 main steps:

$$
\begin{gathered}
M(q) \ddot{q}-J_{c}(q)^{\top} \lambda_{c}=M(q) \ddot{q}_{f} \\
J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})=0
\end{gathered}
$$

Explicit contact solution

1 - Express \ddot{q} as function of \ddot{q}_{f} and λ_{c}

We can analytically inverse the system to obtain the solution in 3 main steps:

$$
M(q) \ddot{q}-J_{c}(q)^{\top} \lambda_{c}=M(q) \ddot{q}_{f}
$$

$$
J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})=0
$$

Explicit contact solution

$$
1 \text { - Express } \ddot{\ddot{q}} \text { as function of } \ddot{q}_{f} \text { and } \lambda_{c}
$$

We can analytically inverse the system to obtain the solution in 3 main steps:

$$
M(q) \ddot{q}-J_{c}(q)^{\top} \lambda_{c}=M(q) \ddot{q}_{f}
$$

$$
J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})=0
$$

2 - Replace \ddot{q} and get an expression depending only on λ_{c}

Explicit contact solution

We can analytically inverse the system to obtain the solution in 3 main steps:

$$
M(q) \ddot{q}-J_{c}(q)^{\top} \lambda_{c}=M(q) \ddot{q}_{f}
$$

$$
1 \text { - Express } \ddot{\ddot{q}} \text { as function of } \ddot{\eta}_{f} \text { and } \lambda_{c}
$$

$$
\ddot{q}=\ddot{q}_{f}+M^{-1}(q) J_{c}(q)^{\top} \lambda_{c}
$$

2 - Replace \ddot{q} and get an expression depending only on λ_{c}

$$
J_{c}(q) M^{-1}(q) J_{c}(q)^{\top} \lambda_{c}+J_{c}(q) \ddot{q}_{f}+\gamma_{c}(q, \dot{q})=0
$$

$$
J_{c}(q) \ddot{q}+\gamma_{c}(q, \dot{q})=0
$$

Mass Matrix: sparse Cholesky factorization

Rigid Body
Dynamics
Algorithms
Roy Featherstone
© Springer

Goal: compute $G_{c}(q) \stackrel{\text { def }}{=} J_{c}(q) M^{-1}(q) J_{c}^{\top}(q)$ without computing $M^{-1}(q)$
Solution: exploiting the sparsity in the Cholesky factorization of $M(q)$

	never accessed
	2
finished	

Cholesky factorization

1. $U_{k, k}=\sqrt{M_{k, k}}$
2. $U_{k, i}=M_{k, i} / U_{k, k}$
3. $U_{i, j}=M_{i, j}-U_{k, i} U_{k, j}$

The total complexity is $O\left(N^{2}\right)$ instead of $O\left(N^{3}\right)$ when using a dense Cholesky decomposition

The Maximum Dissipation Principle

The contact forces λ_{c} fulfill the relation:

$$
G_{c}(q) \lambda_{c}+a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right)=0
$$

From an energetic point of view, this solution minimizes:

$$
\min _{\lambda_{c}} \frac{1}{2} \lambda_{c}^{\top} G_{c}(q) \lambda_{c}+\lambda_{c}^{\top} a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right)
$$

The Maximum Dissipation Principle

The contact forces λ_{c} fulfill the relation:

$$
G_{c}(q) \lambda_{c}+a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right)=0
$$

From an energetic point of view, this solution minimizes:

$$
\min _{\lambda_{c}} \frac{1}{2} \lambda_{c}^{\top} G_{c}(q) \lambda_{c}+\lambda_{c}^{\top} a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right)
$$

or using a max:

$$
\max _{\lambda_{c}}-\frac{1}{2} \lambda_{c}^{\top} \underbrace{\left(G_{c}(q) \lambda_{c}+2 \lambda_{c}^{\top} a_{c, f}\left(q, \dot{,}, \ddot{q}_{f}\right)\right)}_{a_{c}(q, \dot{q}, \ddot{q})}
$$

The Maximum Dissipation Principle

The contact forces λ_{c} fulfill the relation:

$$
G_{c}(q) \lambda_{c}+a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right)=0
$$

From an energetic point of view, this solution minimizes:

$$
\min _{\lambda_{c}} \frac{1}{2} \lambda_{c}^{\top} G_{c}(q) \lambda_{c}+\lambda_{c}^{\top} a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right)
$$

or using a max:

dual problem: maximum dissipation

$$
\begin{array}{ll}
\min _{\ddot{q}} & \frac{1}{2}\left\|\ddot{q}-\ddot{q}_{f}\right\|_{M(q)}^{2} \\
& J_{c}(q) \ddot{q}+\dot{J}_{c}(q, \dot{q}) \dot{q}=0
\end{array} \underbrace{}_{\text {primal problem: least action principle }}
$$

The contact forces then tend to maximize the dissipation of the kinetic energy!

Analytical Derivatives of Rigid Contact Dynamics

Analytical Derivatives of Robot Dynamics

Numerical Optimal Control or Reinforcement Learning approaches require access to Forward or Inverse Dynamics functions and their partial derivatives

Inverse Dynamics
$\tau=\mathbf{I D}\left(q, \dot{q}, \ddot{q}, \lambda_{c}\right)$

Forward Dynamics
$\ddot{q}=\mathbf{F D}\left(q, \dot{q}, \tau, \lambda_{c}\right)$
$\longrightarrow \frac{\partial \mathbf{F D}}{\partial q}, \frac{\partial \mathbf{F D}}{\partial \dot{q}}, \frac{\partial \mathbf{F D}}{\partial \tau}, \frac{\partial \mathbf{F D}}{\partial \lambda_{c}}$

Classic ways to evaluate Numerical Derivatives

Finite Differences

$>$ Consider the input function as a black-box

$$
y=f(x)
$$

> Add a small increment on the input variable

$$
\frac{d y}{d x} \approx \frac{f(x+d x)-f(x)}{d x}
$$

Pros

$>$ Works for any input function
> Easy implementation

Cons

$>$ Not efficient
$>$ Sensitive to numerical rounding errors

Classic ways to evaluate Numerical Derivatives

Finite Differences

$>$ Consider the input function as a black-box

$$
y=f(x)
$$

> Add a small increment on the input variable

$$
\frac{d y}{d x} \approx \frac{f(x+d x)-f(x)}{d x}
$$

Pros

$>$ Works for any input function
> Easy implementation

Cons

$>$ Not efficient
$>$ Sensitive to numerical rounding errors

Automatic Differentiation

$>$ This time, we know the elementary operations in f

$$
y=f(x)=a \cdot \cos (x)
$$

$>$ Apply the chain rule formula
and use derivatives of basic functions

$$
\frac{d y}{d x}=\frac{d a}{\frac{d x}{=0}} \cdot \cos (x)+a \cdot \frac{d \cos (x)}{d x}=-a \cdot \sin (x)
$$

Pros
> Efficient frameworks
> Very accurate

Cons

$>$ Requires specific implementation
$>$ Not able to exploit spatial algebra derivatives

Analytical Derivatives of Dynamics Algorithms

Why analytical derivatives?

We must exploit the intrinsic geometry of the differential operators involved in rigid motions

Analytical Derivatives of Dynamics Algorithms

The Recursive Newton-Euler algorithm
to compute $\tau=\operatorname{ID}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}})$

```Algorithm: \(\boldsymbol{v}_{0}=\mathbf{0}\) \(a_{0}=-a_{g}\) for \(i=1\) to \(N_{B}\) do \(\left[\boldsymbol{X}_{\mathrm{J}}, \boldsymbol{S}_{i}, \boldsymbol{v}_{\mathrm{J}}, \boldsymbol{c}_{\mathrm{J}}\right]=\) jcalc(jtype \(\left.(i), \boldsymbol{q}_{i}, \dot{\boldsymbol{q}}_{i}\right)\) \({ }^{i} \boldsymbol{X}_{\lambda(i)}=\boldsymbol{X}_{\mathrm{J}} \boldsymbol{X}_{\mathrm{T}}(i)\) if \(\lambda(i) \neq 0\) then \({ }^{i} \boldsymbol{X}_{0}={ }^{i} \boldsymbol{X}_{\lambda(i)}{ }^{\lambda(i)} \boldsymbol{X}_{0}\) end \(\boldsymbol{v}_{i}={ }^{i} \boldsymbol{X}_{\lambda(i)} \boldsymbol{v}_{\lambda(i)}+\boldsymbol{v}_{\mathrm{J}}\) \(\boldsymbol{a}_{i}={ }^{i} \boldsymbol{X}_{\lambda(i)} \boldsymbol{a}_{\lambda(i)}+\boldsymbol{S}_{i} \ddot{\boldsymbol{q}}_{i}\) \(+\boldsymbol{c}_{\mathrm{J}}+\boldsymbol{v}_{i} \times \boldsymbol{v}_{\mathrm{J}}\) \(\boldsymbol{f}_{i}=\boldsymbol{I}_{i} \boldsymbol{a}_{i}+\boldsymbol{v}_{i} \times{ }^{*} \boldsymbol{I}_{i} \boldsymbol{v}_{i}-{ }^{i} \boldsymbol{X}_{0}^{*} \boldsymbol{f}_{i}^{x}\) end for \(i=N_{B}\) to 1 do \(\boldsymbol{\tau}_{i}=\boldsymbol{S}_{i}^{\mathrm{T}} \boldsymbol{f}_{i}\) if \(\lambda(i) \neq 0\) then \(\boldsymbol{f}_{\lambda(i)}=\boldsymbol{f}_{\lambda(i)}+{ }^{\lambda(i)} \boldsymbol{X}_{i}^{*} \boldsymbol{f}_{i}\) end```			

## Why analytical derivatives?

We must exploit the intrinsic geometry of the differential operators involved in rigid motions


Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm AND exploiting the sparsity of spatial operations

## Analytical Derivatives of Dynamics Algorithms

The Recursive Newton-Euler algorithm
to compute $\tau=\operatorname{ID}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}})$


## Why analytical derivatives?

We must exploit the intrinsic geometry of the differential operators involved in rigid motions


Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm AND exploiting the sparsity of spatial operations

## Outcome

A simple but efficient algorithm, relying on spatial algebra
AND keeping a minimal complexity of $\mathrm{O}(\mathrm{Nd})$ WHILE the state of the art is $\mathrm{O}\left(\mathrm{N}^{2}\right)$

## Benchmarks of analytical derivatives



Forward Dynamics


## Benchmarks of analytical derivatives

Inverse Dynamics



Forward Dynamics



## Benchmarks of analytical derivatives

Inverse Dynamics



Forward Dynamics





## Analytical Derivatives of Contact Dynamics

Remind that the contact dynamics is provided by:

$$
\underbrace{\left[\begin{array}{cc}
M(q) & J_{c}^{\top}(q) \\
J_{c}(q) & 0
\end{array}\right]}_{K(q)}\left[\begin{array}{r}
\ddot{q} \\
-\lambda_{c}
\end{array}\right]=\left[\begin{array}{r}
M(q) \ddot{q}_{f} \\
-\gamma_{c}(q, \dot{q})
\end{array}\right]
$$

Without too much difficulty, one can show that the contact derivatives are given by:

$$
\left[\left[\begin{array}{r}
\frac{\partial \ddot{q}}{\partial x} \\
-\frac{\partial \lambda_{c}}{\partial x}
\end{array}\right]=-K^{-1}(q)\left[\begin{array}{r}
\frac{\partial \mathrm{ID}}{\partial x}\left(q, \dot{q}, \ddot{q}, \lambda_{c}\right) \\
\frac{\partial a_{c}}{\partial x}(q, \dot{q}, \ddot{q})
\end{array}\right]\right.
$$

Only depends on known analytical derivatives

## The Rigid Contact Problem unilateral contacts

## Unilateral Contact Model



When dealing with unilateral contact conditions, three conditions are required:

## Unilateral Contact Model



When dealing with unilateral contact conditions, three conditions are required:

## * Maximum dissipation:

the contact forces should dissipate at most the kinetic energy

$$
\max _{\lambda_{c}}-\frac{1}{2} \lambda_{c}^{\top}\left(G_{c}(q) \lambda_{c}+2 \lambda_{c}^{\top} a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right)\right)
$$

## Unilateral Contact Model



When dealing with unilateral contact conditions, three conditions are required:

* Maximum dissipation: the contact forces should dissipate at most the kinetic energy

B Complementary condition (Signorini's conditions): the floor can only push (no pulling) + no force when the contact is about to open


$$
0 \leq \lambda_{c, n} \perp a_{c, n} \geq 0
$$

## Unilateral Contact Model


contact/interaction forces

When dealing with unilateral contact conditions, three conditions are required:

* Maximum dissipation: the contact forces should dissipate at most the kinetic energy

B Complementary condition (Signorini's conditions): the floor can only push (no pulling) + no force when the contact is about to open

* Friction cone constraint (Coulomb law):
the lateral forces are bounded by the normal force



## Unilateral Contact Problem



The contact problem then corresponds to a so-called Nonlinear Complementary Problem:

$$
\left[\begin{array}{rr}
\min _{\lambda_{c}} \frac{1}{2} \lambda_{c}^{\top} G_{c}(q) \lambda_{c}+\lambda_{c}^{\top} a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right) & \text { maximum dissipation } \\
\sqrt{\lambda_{c, x}^{2}+\lambda_{c, y}^{2}} \leq \mu \lambda_{c, n} & \text { Coulomb friction } \\
0 \leq \lambda_{c, n} \perp a_{c, n} \geq 0 & \text { contact complementarity }
\end{array}\right.
$$

which is nonconvex (hard to solve)!

## The Relaxed Contact Problem a mix between rigid and soft

## The Relaxed Contact Problem



The contact problem can be relaxed by removing the complementarity condition AND regularization the forces:

$$
\begin{array}{rr}
\min _{\lambda_{c}} \frac{1}{2} \lambda_{c}^{\top}\left(G_{c}(q)+R\right) \lambda_{c}+\lambda_{c}^{\top} a_{c, f}\left(q, \dot{q}, \ddot{q}_{f}\right) & \begin{array}{c}
\text { maximum dissipation } \\
+ \text { regularization }
\end{array} \\
\sqrt{\lambda_{c, x}^{2}+\lambda_{c, y}^{2} \leq \mu \lambda_{c, n}} & \text { Coulomb friction } \\
\square \leq \lambda_{c, n} \perp a_{c, n} \geq 0 & \text { No contact }
\end{array}
$$

which becomes convex (easier to solve) but with some physical inconsistencies!

