Contact Dynamics in Robotics Modeling and efficient resolution

Justin Carpentier Researcher, INRIA and ENS, Paris

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

M(q)

Mass Matrix

Joseph-Louis Lagrange

$$\ddot{q} + C(q, \dot{q}) + G(q) = \tau$$

Coriolis centrifugal

Gravity

Motor torque

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

M(q)

Mass Matrix

Joseph-Louis Lagrange

$$\ddot{q} + C(q, \dot{q}) + G(q) = \tau$$

Coriolis centrifugal

Gravity

Motor torque

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

M(q)

Mass Matrix

Joseph-Louis Lagrange

$$\ddot{q} + C(q, \dot{q}) + G(q) = \tau$$

Coriolis centrifugal

Gravity

Motor torque

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

M(q)

Mass Matrix

contact/interaction forces

Joseph-Louis Lagrange

$$\ddot{q} + C(q, \dot{q}) + G(q) = \tau$$

Coriolis centrifugal

Gravity

Motor torque

The poly-articulated system dynamics is driven by the so-called Lagrangian dynamics:

Mass Matrix

contact/interaction forces

Joseph-Louis Lagrange

 $M(q)\ddot{q} + C(q,\dot{q}) + G(q) = \tau + J_c^{\mathsf{T}}(q)\lambda_c$

Coriolis centrifugal

Gravity

Motor torque

External forces

The Rigid Body Dynamics Algorithms

Goal: exploit at best the **sparsity** induced by the kinematic tree

$$\ddot{q} = \mathbf{ForwardDynamics}\left(q, \dot{q}, \tau, \lambda_{c}\right)$$

 $\tau = \mathbf{InverseDynamics}\left(q, \dot{q}, \ddot{q}, \ddot{q}, \lambda_{c}\right)$

The Recursive Newton-Euler Algorithm

M(q)q+ C(q

Mass Matrix

Coriolis centrifugal

Memmo Summer School

- The Articulated Body Algorithm

- Simulation
 - Control

$$(q, \dot{q}) + G(q) = \tau + J_c^{\mathsf{T}}(q)\lambda_c$$

Gravity

Motor torque

— Contact Dynamics in Robotics — Justin Carpentier

The Rigid Body Dynamics Algorithms

Goal: exploit at best the **sparsity** induced by the kinematic tree

Memmo Summer School

- The Articulated Body Algorithm

Dynamics
$$(q, \dot{q}, \tau, \lambda_c)$$

- Simulation
 - Control
- $\tau = \mathbf{InverseDynamics}\left(q, \dot{q}, \ddot{q}, \ddot{q}, \lambda_{c}\right)$
 - The Recursive Newton-Euler Algorithm

$$(\dot{q}) + G(\dot{q})$$

Gravity

Motor torque

 $(q) = \tau + J_{c}^{\dagger}(q)\lambda_{c}$ External forces

Roy Featherstone

$M(q)\ddot{q} + C(q,\dot{q}) + G(q) = \tau + J_c^{\mathsf{T}}(q)\lambda_c$

Understand the various approaches of the state of the art to compute λ_c in:

$M(q)\ddot{q} + C(q,\dot{q}) + G(q) = \tau + J_c^{\mathsf{T}}(q)\lambda_c$

Understand the various approaches of the state of the art to compute λ_c in:

$M(q)\ddot{q} + C(q,\dot{q}) + G(q) = \tau + J_c^{\mathsf{T}}(q)\lambda_c$

Soft contact

spring-damper model

Understand the various approaches of the state of the art to compute λ_c in:

Understand the various approaches of the state of the art to compute λ_c in:

Understand the various approaches of the state of the art to compute λ_c in:

$$M(q)\ddot{q} + C(q,\dot{q}) + G(q$$

The Soft Contact Problem

Soft contact: the spring-damper model

This contact model is defined by the spring k and the damper d quantities, reading:

0

soft

This is the **simplest** contact model, very **intuitive** and **straightforward** to implement

 بتبعاؤبتن	and the second		er en el como		er en el como		eered river
 a atta at	وبتواليتو	in a contra con	in the state of the		كينا بتليب تربي		e de la compañía de l
240	280	320	360	400	440	480	520

 بتبعاؤبتن	and the second		er en el como		er en el como		eered river
 a atta at		in a contra con	in the state of the		كينا بتليب تربي		e de la compañía de l
240	280	320	360	400	440	480	520

Soft contact: the spring-damper model

- This is the simplest contact model, very intuitive and straightforward to implement
 - BUT
- not relevant to model rigid interface ($k \rightarrow \infty$), requires stable integrator (stiff equation)

The Rigid Contact Problem bilateral contacts

"Nature is thrifty in all its actions"

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

Pierre-Louis Maupertuis

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

$$S_1 = \int_{t_1}^{t_2} \frac{1}{2} m \left(\frac{dx}{dt}\right)^2 - mgx \, dt$$

its actions"

Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

$$S_1 = \int_{t_1}^{t_2} \frac{1}{2} m \left(\frac{dx}{dt}\right)^2 - mgx \, dt$$

its actions"

Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

$$S_2 = \int_{t1}^{t2} \frac{1}{2} m \left(\frac{dx}{dt}\right)^2 - mgx \, dt$$

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

$$S_1 = \int_{t_1}^{t_2} \frac{1}{2} m \left(\frac{dx}{dt}\right)^2 - mgx \, dt$$

Innin

its actions"

Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

contact/interaction forces

where $\ddot{q}_f \stackrel{\text{def}}{=} M^{-1}(q) \left(\tau - C(q, \dot{q}) - G(q) \right)$ is the so-called **free acceleration** (without constraint)

<u>**Problem:**</u> knowing q and \dot{q} , we aim at retrieving \ddot{q} and λ_c

a metric induced by the kinetic energy

contact/interaction forces

where $\ddot{q}_f \stackrel{\text{def}}{=} M^{-1}(q) \left(\tau - C(q, \dot{q}) - G(q) \right)$ is the so-called **free acceleration** (without constraint)

contact/interaction forces

where $\ddot{q}_f \stackrel{\text{def}}{=} M^{-1}(q) \left(\tau - C(q, \dot{q}) - G(q) \right)$ is the so-called **free acceleration** (without constraint)

contact/interaction forces

where $\ddot{q}_f \stackrel{\text{def}}{=} M^{-1}(q) \left(\tau - C(q, \dot{q}) - G(q) \right)$ is the so-called **free acceleration** (without constraint)

the constraint differentiated twice w.r.t. time

How to solve it? Where do the contact forces lie?

contact/interaction forces

Problem: we have now formed an equality-constrained QP.

 $\min_{\ddot{q}} \ \frac{1}{2} \|\ddot{q} - \ddot{q}_f\|_{M(q)}^2$

 $J_c(q) \ddot{q} + \gamma_c(q, \dot{q}) = 0$

Problem: we have now formed an equality-constrained QP.

How to solve it? Where do the contact forces lie?

 $L(\ddot{q},\lambda_c) =$

$$\min_{\ddot{q}} \ \frac{1}{2} \| \ddot{q} - \ddot{q}_f \|_{M(q)}^2$$

 $J_c(q) \ddot{q} + \gamma_c(q, \dot{q}) = 0$

The solution can be retrieved by **deriving** the KKT conditions of the QP problem via the so-called Lagrangian:

dual variable = contact forces

$$= \frac{1}{2} \|\ddot{q} - \ddot{q}_f\|_{M(q)}^2 - \lambda_c^{\mathsf{T}} \left(J_c(q)\ddot{q} + \gamma_c(q,\dot{q}) \right)$$

cost function

equality constraint

dual variable = contact forces

$$L(\ddot{q}, \lambda_c) = \frac{1}{2} \|\ddot{q} - \ddot{q}_f\|_{M(z)}^2$$

cost function

 $J_{(q)} - \lambda_c^{\top} (J_c(q)\ddot{q} + \gamma_c(q, \dot{q}))$

equality constraint

dual variable = contact forces

$$L(\ddot{q},\lambda_{c}) = \frac{1}{2} \|\ddot{q} - \ddot{q}_{f}\|_{M(q)}^{2} - \lambda_{c}^{\top} (J_{c}(q)\ddot{q} + \gamma_{c}(q,\dot{q}))$$

cost function

$$\nabla_{\ddot{q}}L = M(q)(\ddot{q} - \nabla_{\lambda_c}L) = J_c(q)\ddot{q} + J_c(q)\dot{q}$$

equality constraint

- The **KKT conditions** of the QP problem are given by:
 - $-\ddot{q}_{f}) J_{c}(q)^{\mathsf{T}}\lambda_{c}$ $-\gamma_{c}(q,\dot{q})$
 - = 0

= 0

- Joint space force propagation
- Contact acceleration constraint

dual variable = contact forces

$$L(\ddot{q},\lambda_{c}) = \frac{1}{2} \|\ddot{q} - \ddot{q}_{f}\|_{M(q)}^{2} - \lambda_{c}^{\top} (J_{c}(q)\ddot{q} + \gamma_{c}(q,\dot{q}))$$

cost function

$$\nabla_{\ddot{q}}L = M(q)(\ddot{q} - \chi_{c}) = J_{c}(q)\ddot{q} + \chi_{c}$$

rearranging a bit the terms, leads to:

$$M(q)\ddot{q} - J_c(q)^{\mathsf{T}}\lambda_c = M(q)\ddot{q}_f$$
$$J_c(q)\ddot{q} + 0 = -\gamma_c(q, \dot{q})$$

equality constraint

- The **KKT conditions** of the QP problem are given by:
 - $-\ddot{q}_{f}) J_{c}(q)^{\mathsf{T}}\lambda_{c}$ $\gamma_{c}(q,\dot{q})$
- = 0

= 0

- Joint space force propagation
- Contact acceleration constraint

dual variable = contact forces

$$L(\ddot{q},\lambda_{c}) = \frac{1}{2} \|\ddot{q} - \ddot{q}_{f}\|_{M(q)}^{2} - \lambda_{c}^{\top} (J_{c}(q)\ddot{q} + \gamma_{c}(q,\dot{q}))$$

cost function

$$\nabla_{\ddot{q}}L = M(q)(\ddot{q} - \chi_{c}) = J_{c}(q)\ddot{q} + \chi_{c}$$

rearranging a bit the terms, leads to:

$$M(q)\ddot{q} - J_c(q)^{\mathsf{T}}\lambda_c = M(q)\ddot{q}_f$$
$$J_c(q)\ddot{q} + 0 = -\gamma_c(q, \dot{q})$$

equality constraint

- The **KKT conditions** of the QP problem are given by:
 - $-\ddot{q}_f) J_c(q)^{\mathsf{T}}\lambda_c$ Joint space force propagation = 0 $\gamma_c(q,\dot{q})$ = 0Contact acceleration constraint

leading to the so-called **KKT dynamics**:

$$\begin{bmatrix} M(q) & J_c^{\mathsf{T}}(q) \\ J_c(q) & 0 \end{bmatrix} \begin{bmatrix} \ddot{q} \\ -\lambda_c \end{bmatrix} = \begin{bmatrix} M(q)\ddot{q}_f \\ -\gamma_c(q, \dot{q}) \end{bmatrix}_{K(q)}$$

dual variable = contact forces

$$L(\ddot{q},\lambda_{c}) = \frac{1}{2} \|\ddot{q} - \ddot{q}_{f}\|_{M(q)}^{2} - \lambda_{c}^{\top} (J_{c}(q)\ddot{q} + \gamma_{c}(q,\dot{q}))$$

cost function

$$\nabla_{\ddot{q}}L = M(q)(\ddot{q} - \chi_c) + \chi_c L = J_c(q)\ddot{q} + \chi_c$$

rearranging a bit the terms, leads to:

$$M(q)\ddot{q} - J_c(q)^{\mathsf{T}}\lambda_c = M(q)\ddot{q}_f$$
$$J_c(q)\ddot{q} + 0 = -\gamma_c(q, \dot{q})$$

BUT, there might be one, redundant solutions or no solution at all: wether (i) $J_c(q)$ is full rank (ii) $J_c(q)$ is not full rank or (ii) $\gamma_c(q, \dot{q})$ is not in the range space of $J_c(q)$

equality constraint

- The **KKT conditions** of the QP problem are given by:
 - $-\ddot{q}_f) J_c(q)^{\mathsf{T}}\lambda_c$ Joint space force propagation = 0 $\gamma_c(q,\dot{q})$ = 0Contact acceleration constraint

leading to the so-called **KKT dynamics**:

$$\begin{bmatrix} M(q) & J_c^{\mathsf{T}}(q) \\ J_c(q) & 0 \end{bmatrix} \begin{bmatrix} \ddot{q} \\ -\lambda_c \end{bmatrix} = \begin{bmatrix} M(q)\ddot{q}_f \\ -\gamma_c(q,\dot{q}) \end{bmatrix}$$

K(q)

We can analytically inverse the system to obtain the solution in **3 main steps**:

$$M(q)\ddot{q} - J_c(q)^{\mathsf{T}}\lambda_c = M(q)\ddot{q}_f$$

$$J_c(q)\ddot{q} + \gamma_c(q, \dot{q}) = 0$$

We can analytically inverse the system to obtain the solution in **3 main steps**:

$$M(q)\ddot{q} - J_c(q)^{\mathsf{T}}\lambda_c = M(q)\ddot{q}_f$$

$$J_c(q)\ddot{q} + \gamma_c(q, \dot{q}) = 0$$

1 - Express \ddot{q} as function of \ddot{q}_f and λ_c

$$\ddot{q} = \ddot{q}_f + M^{-1}(q)J_c(q)^{\mathsf{T}}\lambda_c$$

We can analytically inverse the system to obtain the solution in **3 main steps**:

$$M(q)\ddot{q} - J_c(q)^{\mathsf{T}}\lambda_c = M(q)\ddot{q}_f$$

$$J_c(q)\ddot{q} + \gamma_c(q, \dot{q}) = 0$$

1 - Express \ddot{q} as function of \ddot{q}_f and λ_c

$$\ddot{q} = \ddot{q}_f + M^{-1}(q)J_c(q)^{\mathsf{T}}\lambda_c$$

2 - Replace \ddot{q} and get an expression depending only on λ_c

 $J_c(q)M^{-1}(q)J_c(q)^{\top}\lambda_c + J_c(q)\ddot{q}_f + \gamma_c(q,\dot{q}) = 0$

 $G_c(q)$

Delassus' matrix **Inverse Operational Space Inertia Matrix**

 $a_{c,f}(q,\dot{q},\ddot{q}_f)$

Free contact acceleration

We can analytically inverse the system to obtain the solution in **3 main steps**:

$$M(q)\ddot{q} - J_c(q)^{\mathsf{T}}\lambda_c = M(q)\ddot{q}_f$$

$$J_c(q)\ddot{q} + \gamma_c(q, \dot{q}) = 0$$

1 - Express \ddot{q} as function of \ddot{q}_f and λ_c

$$\ddot{q} = \ddot{q}_f + M^{-1}(q)J_c(q)^{\mathsf{T}}\lambda_c$$

2 - Replace \ddot{q} and get an expression depending only on λ_c

 $J_c(q)M^{-1}(q)J_c(q)^{\mathsf{T}}\lambda_c + J_c(q)\ddot{q}_f + \gamma_c(q,\dot{q}) = 0$

 $G_c(q)$

Delassus' matrix **Inverse Operational Space Inertia Matrix**

 $a_{c,f}(q,\dot{q},\ddot{q}_f)$

Free contact acceleration

3 - Inverse G(q) and find the optimal λ_c

$$\lambda_{c} = -G_{c}^{-1}(q) a_{c,f}(q, \dot{q}, \ddot{q}_{f})$$

Mass Matrix: sparse Cholesky factorization

<u>Goal</u>: compute $G_c(q) \stackrel{\text{def}}{=} J_c(q) M^{-1}(q) J_c^{\mathsf{T}}(q)$ without computing $M^{-1}(q)$

Cholesky factorization

$$U_{k,k} = \sqrt{M_{k,k}}$$

2.
$$U_{k,i} = M_{k,i} / U_{k,k}$$

3.
$$U_{i,j} = M_{i,j} - U_{k,i} U_{k,j}$$

The total complexity is $O(N^2)$ instead of $O(N^3)$ when using a dense Cholesky decomposition

Innin

<u>Solution</u>: exploiting the sparsity in the Cholesky factorization of M(q)

The Maximum Dissipation Principle

Innin

From an energetic point of view, this solution minimizes: $\min_{\lambda_c} \frac{1}{2} \lambda_c^{\mathsf{T}} G_c(q) \lambda_c + \lambda_c^{\mathsf{T}} a_{c,f}(q, \dot{q}, \ddot{q}_f)$

The contact forces λ_c fulfill the relation: $G_c(q)\lambda_c + a_{c,f}(q, \dot{q}, \ddot{q}_f) = 0$

The Maximum Dissipation Principle

contact/interaction forces

The contact forces λ_c fulfill the relation: $G_c(q)\lambda_c + a_{c,f}(q, \dot{q}, \ddot{q}_f) = 0$

From an energetic point of view, this solution minimizes: $\min_{\lambda_c} \frac{1}{2} \lambda_c^{\mathsf{T}} G_c(q) \lambda_c + \lambda_c^{\mathsf{T}} a_{c,f}(q, \dot{q}, \ddot{q}_f)$

or using a max:

 $a_c(q,\dot{q},\ddot{q})$

The Maximum Dissipation Principle

The contact forces λ_c fulfill the relation: $G_c(q)\lambda_c + a_{c,f}(q, \dot{q}, \ddot{q}_f) = 0$

From an energetic point of view, this solution minimizes: $\min_{\lambda_c} \frac{1}{2} \lambda_c^{\mathsf{T}} G_c(q) \lambda_c + \lambda_c^{\mathsf{T}} a_{c,f}(q, \dot{q}, \ddot{q}_f)$

or using a max:

$$-2\lambda_c^{\top}a_{c,f}(q,\dot{q},\ddot{q}_f))$$

$$(\dot{q}, \ddot{q}_f))$$

$$\min_{\ddot{q}} \frac{1}{2} \|\ddot{q} - \ddot{q}_f\|_{M(q)}^2$$
$$J_c(q) \,\ddot{q} + \dot{J}_c(q, \dot{q}) \dot{q} = 0$$

dual problem: maximum dissipation

 $a_c(q,\dot{q},\ddot{q})$

primal problem: least action principle

The contact forces then tend to maximize the dissipation of the kinetic energy!

Analytical Derivatives of Rigid Contact Dynamics

Analytical Derivatives of Robot Dynamics

Numerical Optimal Control or Reinforcement Learning approaches require access to Forward or Inverse Dynamics functions and their partial derivatives

Inverse Dynamics

Classic ways to evaluate Numerical Derivatives

Finite Differences

> Consider the input function as **a black-box**

y = f(x)

> Add a **small increment** on the input variable

Classic ways to evaluate Numerical Derivatives

Finite Differences

> Consider the input function as **a black-box**

y = f(x)

> Add a **small increment** on the input variable

Automatic Differentiation

> This time, we know the **elementary operations** in f

$$y = f(x) = a . cos(x)$$

> Apply the **chain rule formula** and use derivatives of basic functions

Analytical Derivatives of Dynamics Algorithms

dR dt

Why analytical derivatives?

We must exploit the intrinsic geometry of the differential operators involved in rigid motions

Analytical Derivatives of Dynamics Algorithms

The Recursive Newton-Euler algorithm to compute $\tau = ID(q, \dot{q}, \ddot{q})$

Algorithm: $\boldsymbol{v}_0 = \boldsymbol{0}$ $a_0 = -a_a$ for i = 1 to N_B do $[oldsymbol{X}_{\mathrm{J}},oldsymbol{S}_{i},oldsymbol{v}_{\mathrm{J}},oldsymbol{c}_{\mathrm{J}}]=0$ $jcalc(jtype(i), \boldsymbol{q}_i, \dot{\boldsymbol{q}}_i)$ $^{i}\boldsymbol{X}_{\lambda(i)} = \boldsymbol{X}_{\mathrm{J}} \boldsymbol{X}_{\mathrm{T}}(i)$ if $\lambda(i) \neq 0$ then ${}^{i}\!X_{0}={}^{i}\!X_{\lambda(i)}\,{}^{\lambda(i)}\!X_{0}$ end $oldsymbol{v}_i = {^i}oldsymbol{X}_{\lambda(i)} \, oldsymbol{v}_{\lambda(i)} + oldsymbol{v}_{\mathrm{J}}$ $oldsymbol{a}_i = {}^i X_{\lambda(i)} \, oldsymbol{a}_{\lambda(i)} + oldsymbol{S}_i \, oldsymbol{\ddot{q}}_i \, oldsymbol{a}_{\lambda(i)}$ $+ c_{\mathrm{J}} + v_i imes v_{\mathrm{J}}$ $oldsymbol{f}_i = oldsymbol{I}_i \,oldsymbol{a}_i + oldsymbol{v}_i imes^* \,oldsymbol{I}_i \,oldsymbol{v}_i - {}^i oldsymbol{X}_0^* \,oldsymbol{f}_i^x$ end for $i = N_B$ to 1 do $oldsymbol{ au}_i = oldsymbol{S}_i^{ ext{T}} oldsymbol{f}_i$ if $\lambda(i) \neq 0$ then $oldsymbol{f}_{\lambda(i)} = oldsymbol{f}_{\lambda(i)} + {}^{\lambda(i)} oldsymbol{X}_i^* \, oldsymbol{f}_i$ end end

dR dt

Why analytical derivatives?

We must exploit the intrinsic geometry of the differential operators involved in rigid motions

Summary of the methodology

Applying the **chain rule formula** on each line of the Recursive Newton-Euler algorithm **AND exploiting the sparsity** of spatial operations

Analytical Derivatives of Dynamics Algorithms

The Recursive Newton-Euler algorithm to compute $\tau = ID(q, \dot{q}, \ddot{q})$

Algorithm: $\boldsymbol{v}_0 = \boldsymbol{0}$ $a_0 = -a_q$ for i = 1 to N_B do $[oldsymbol{X}_{\mathrm{J}},oldsymbol{S}_{i},oldsymbol{v}_{\mathrm{J}},oldsymbol{c}_{\mathrm{J}}]=0$ $jcalc(jtype(i), \boldsymbol{q}_i, \dot{\boldsymbol{q}}_i)$ $^{n}\boldsymbol{X}_{\lambda(i)} = \boldsymbol{X}_{\mathrm{J}} \boldsymbol{X}_{\mathrm{T}}(i)$ if $\lambda(i) \neq 0$ then ${}^{i}\!X_{0}={}^{i}\!X_{\lambda(i)}\,{}^{\lambda(i)}\!X_{0}$ end $oldsymbol{v}_i = {}^i oldsymbol{X}_{\lambda(i)} \, oldsymbol{v}_{\lambda(i)} + oldsymbol{v}_{\mathrm{J}}$ $oldsymbol{a}_i = {}^{\imath} X_{\lambda(i)} \, oldsymbol{a}_{\lambda(i)} + oldsymbol{S}_i \, oldsymbol{\ddot{q}}_i \, oldsymbol{a}_{\lambda(i)}$ $+ \boldsymbol{c}_{\mathrm{J}} + \boldsymbol{v}_i imes \boldsymbol{v}_{\mathrm{J}}$ $oldsymbol{f}_i = oldsymbol{I}_i \,oldsymbol{a}_i + oldsymbol{v}_i imes^* \,oldsymbol{I}_i \,oldsymbol{v}_i - {}^i oldsymbol{X}_0^* \,oldsymbol{f}_i^x$ end for $i = N_B$ to 1 do $oldsymbol{ au}_i = oldsymbol{S}_i^{ ext{T}} oldsymbol{f}_i$ if $\lambda(i) \neq 0$ then $oldsymbol{f}_{\lambda(i)} = oldsymbol{f}_{\lambda(i)} + {}^{\lambda(i)} oldsymbol{X}_i^* \, oldsymbol{f}_i$ end end

We must exploit the **intrinsic geometry** of the **differential operators** involved in rigid motions

> dR dt

Applying the **chain rule formula** on each line of the Recursive Newton-Euler algorithm **AND exploiting the sparsity** of spatial operations

A **simple** but **efficient** algorithm, relying on spatial algebra AND keeping a minimal complexity of O(Nd) WHILE the state of the art is O(N²)

Why analytical derivatives?

Summary of the methodology

Outcome

Benchmarks of analytical derivatives

Inverse Dynamics

Forward Dynamics

Benchmarks of analytical derivatives

Inverse Dynamics

Forward Dynamics

Benchmarks of analytical derivatives

Inverse Dynamics

Forward Dynamics

Analytical Derivatives of Contact Dynamics

Remind that the contact dynamics is provided by:

$$\begin{bmatrix} M(q) & J_c^{\mathsf{T}}(q) \\ J_c(q) & 0 \end{bmatrix}$$

K(q)

Without too much difficulty, one can show that the contact derivatives are given by:

Only depends on known analytical derivatives

$$\begin{bmatrix} \ddot{q} \\ -\lambda_c \end{bmatrix} = \begin{bmatrix} M(q)\ddot{q}_f \\ -\gamma_c(q,\dot{q}) \end{bmatrix}$$

$$T^{-1}(q) \begin{bmatrix} \frac{\partial |D|}{\partial x} (q, \dot{q}, \ddot{q}, \lambda_c) \\ \frac{\partial a_c}{\partial x} (q, \dot{q}, \ddot{q}, \ddot{q}) \end{bmatrix}$$

The Rigid Contact Problem unilateral contacts

When dealing with unilateral contact conditions, three conditions are required:

contact/interaction forces

When dealing with unilateral contact conditions, three conditions are required:

Maximum dissipation: the contact forces **should dissipate** at most the kinetic energy

$$\max_{\lambda_c} -\frac{1}{2} \lambda_c^{\mathsf{T}} (G_c(q) \lambda_c + 2\lambda_c^{\mathsf{T}} a_{c,f}(q))$$

Innin

 $(\dot{q}, \dot{q}, \ddot{q}_f))$

When dealing with unilateral contact conditions, three conditions are required:

Maximum dissipation: the contact forces **should dissipate** at most the kinetic energy

$$\max_{\lambda_c} -\frac{1}{2} \lambda_c^{\mathsf{T}} (G_c(q) \lambda_c + 2\lambda_c^{\mathsf{T}} a_{c,f}(q))$$

Complementary condition (Signorini's conditions):

the floor can only push (no pulling) + no force when the contact is about to open

When dealing with unilateral contact conditions, three conditions are required:

Maximum dissipation: the contact forces **should dissipate** at most the kinetic energy

$$\max_{\lambda_c} -\frac{1}{2} \lambda_c^{\mathsf{T}} (G_c(q) \lambda_c + 2\lambda_c^{\mathsf{T}} a_{c,f}(q))$$

Complementary condition (Signorini's conditions):

the floor can only push (no pulling) + no force when the contact is about to open

Friction cone constraint (Coulomb law):

Unilateral Contact Problem

The contact problem then corresponds to a so-called Nonlinear Complementary Problem:

which is **nonconvex (hard to solve)**!

contact/interaction forces

$$G_c(q)\lambda_c + \lambda_c^{\top}a_{c,f}(q,\dot{q},\ddot{q}_f)$$

$$+ \lambda_{c,y}^2 \le \mu \lambda_{c,n}$$
$$\mu \perp a_{c,n} \ge 0$$

maximum dissipation

Coulomb friction

contact complementarity

The Relaxed Contact Problem a mix between rigid and soft

The Relaxed Contact Problem

The contact problem can be relaxed by removing the complementarity condition AND regularization the forces:

$$(q) + \mathbf{R} \lambda_c + \lambda_c^{\mathsf{T}} a_{c,f}(q, \dot{q}, \ddot{q}_f)$$

$$_{c,y}^2 \le \mu \lambda_{c,n}$$

$$a_{c,n} \ge 0$$

maximum dissipation + regularization

Coulomb friction

No contact complementarity

which becomes **convex** (easier to solve) but with some physical inconsistencies!

