
Robotique, Vision et Apprentissage
Plongement des techniques de génération de mouvements  

au sein du formalisme de l’apprentissage

Contact Dynamics in Robotics
Modeling and efficient resolution

Justin Carpentier
Researcher, INRIA and ENS, Paris

Memmo Summer School

3Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Contact: the Physical Problem

gravity

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Joseph-Louis Lagrange
The poly-articulated system dynamics  

is driven by the so-called Lagrangian dynamics:

3Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Contact: the Physical Problem

gravity

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Joseph-Louis Lagrange
The poly-articulated system dynamics  

is driven by the so-called Lagrangian dynamics:

3Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Contact: the Physical Problem

gravity

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Joseph-Louis Lagrange
The poly-articulated system dynamics  

is driven by the so-called Lagrangian dynamics:

3Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Contact: the Physical Problem

contact/interaction forces

gravity

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Joseph-Louis Lagrange
The poly-articulated system dynamics  

is driven by the so-called Lagrangian dynamics:

3Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Contact: the Physical Problem

contact/interaction forces

gravity

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Joseph-Louis Lagrange
The poly-articulated system dynamics  

is driven by the so-called Lagrangian dynamics:

4Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Rigid Body Dynamics Algorithms

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Goal: exploit at best the sparsity induced by the kinematic tree

Roy Featherstone

The Articulated Body Algorithm
··q = ForwardDynamics (q, ·q, τ, λc)

Simulation

The Recursive Newton-Euler Algorithm

τ = InverseDynamics (q, ·q, ··q, λc)
Control

4Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Rigid Body Dynamics Algorithms

Mass 
Matrix

Coriolis 
centrifugal Gravity Motor 

torque

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q)λc
External 
forces

Depth d

6.4. BRANCH-INDUCED SPARSITY 111

0

1

2 3

4 5 6 7 H LT L

Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff

6.4. BRANCH-INDUCED SPARSITY 111

0

1

2 3

4 5 6 7 H LT L

Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff

Goal: exploit at best the sparsity induced by the kinematic tree

Roy Featherstone

The Articulated Body Algorithm
··q = ForwardDynamics (q, ·q, τ, λc)

Simulation

The Recursive Newton-Euler Algorithm

τ = InverseDynamics (q, ·q, ··q, λc)
Control

5Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Gaol of this class
Understand the various approaches of the state of the art to compute in:λc

contact/interaction forces

gravity

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q) λc

5Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Gaol of this class
Understand the various approaches of the state of the art to compute in:λc

contact/interaction forces

gravity

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q) λc

5Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Gaol of this class
Understand the various approaches of the state of the art to compute in:λc

spring-damper model

contact/interaction forces

gravity

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q) λc

Soft contact

5Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Gaol of this class
Understand the various approaches of the state of the art to compute in:λc

spring-damper model

bilateral contact model
unilateral contact model

contact/interaction forces

gravity

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q) λc

Soft contact

Rigid contact

5Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Gaol of this class
Understand the various approaches of the state of the art to compute in:λc

spring-damper model

bilateral contact model
unilateral contact model

the relaxed contact model

contact/interaction forces

gravity

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q) λc

Soft contact

Rigid contact

Mixed contact

The Soft Contact Problem

7Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

7Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

8Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Soft contact: the spring-damper model
This is the simplest contact model, very intuitive and straightforward to implement

λn
c = max(−k . p − d . ·p,0)

This contact model is defined by the spring and the damper quantities, reading:k d

the max function means: 
the ground can ONLY push

pk,d

soft rigid
0 +∞value of k

10Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Soft contact: the spring-damper model
This is the simplest contact model, very intuitive and straightforward to implement

BUT

pk,d

not relevant to model rigid interface (), requires stable integrator (stiff equation)k → ∞

The Rigid Contact Problem 
bilateral contacts

12Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least-Action Principle

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

"Nature is thrifty in all its actions"
Pierre-Louis Maupertuis

12Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least-Action Principle

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

"Nature is thrifty in all its actions"
Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

S1 = ∫
t2

t1

1
2

m (dx
dt)

2

− mgx dt

12Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least-Action Principle

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

"Nature is thrifty in all its actions"
Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

S1 = ∫
t2

t1

1
2

m (dx
dt)

2

− mgx dt S2 = ∫
t2

t1

1
2

m (dx
dt)

2

− mgx dt

12Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least-Action Principle

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

"Nature is thrifty in all its actions"
Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

S1 = ∫
t2

t1

1
2

m (dx
dt)

2

− mgx dt S2 = ∫
t2

t1

1
2

m (dx
dt)

2

− mgx dt<
The solution is a 

stationary point, i.e δS = 0

13Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least Action Principle as a classic QP
Problem: knowing and , we aim at retrieving and q ·q ··q λc

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0

least distance w.r.t to the
unconstrained acceleration a metric induced by the

kinetic energy

gap between 
floor and foot

where is the so-called free acceleration (without constraint)··qf
def= M−1(q)(τ − C(q, ·q) − G(q))

contact/interaction forces

gravity

13Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least Action Principle as a classic QP
Problem: knowing and , we aim at retrieving and q ·q ··q λc

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0

least distance w.r.t to the
unconstrained acceleration a metric induced by the

kinetic energy

gap between 
floor and foot

where is the so-called free acceleration (without constraint)··qf
def= M−1(q)(τ − C(q, ·q) − G(q))

contact/interaction forces

gravity

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0
Jc(q) ·q = 0
Jc(q) ··q + ·Jc(q, ·q) ·q

γc(q, ·q)

= 0

13Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least Action Principle as a classic QP
Problem: knowing and , we aim at retrieving and q ·q ··q λc

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0

least distance w.r.t to the
unconstrained acceleration a metric induced by the

kinetic energy

gap between 
floor and foot

where is the so-called free acceleration (without constraint)··qf
def= M−1(q)(τ − C(q, ·q) − G(q))

contact/interaction forces

gravity

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0
Jc(q) ·q = 0
Jc(q) ··q + ·Jc(q, ·q) ·q

γc(q, ·q)

= 0

index reduction 
= time derivation

13Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least Action Principle as a classic QP
Problem: knowing and , we aim at retrieving and q ·q ··q λc

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0

least distance w.r.t to the
unconstrained acceleration a metric induced by the

kinetic energy

gap between 
floor and foot

where is the so-called free acceleration (without constraint)··qf
def= M−1(q)(τ − C(q, ·q) − G(q))

contact/interaction forces

gravity

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0
Jc(q) ·q = 0
Jc(q) ··q + ·Jc(q, ·q) ·q

γc(q, ·q)

= 0

index reduction 
= time derivation

index reduction

the constraint differentiated twice w.r.t. time

14Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least Action Principle as a classic QP
Problem: we have now formed an equality-constrained QP.

How to solve it? Where do the contact forces lie?

min
··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0

contact/interaction forces

gravity

14Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Least Action Principle as a classic QP

The solution can be retrieved by deriving  
the KKT conditions of the QP problem via the so-called Lagrangian:

Problem: we have now formed an equality-constrained QP.

How to solve it? Where do the contact forces lie?

min
··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0

contact/interaction forces

gravity

L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

15Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Solving the Lagrangian contact problem
L(··q, λc) =

1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

15Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Solving the Lagrangian contact problem

The KKT conditions of the QP problem are given by:

∇··q L = M(q)(··q − ··qf) − Jc(q)⊤λc = 0
∇λc

L = Jc(q)··q + γc(q, ·q) = 0

Joint space force propagation

Contact acceleration constraint

L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

15Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Solving the Lagrangian contact problem

The KKT conditions of the QP problem are given by:

∇··q L = M(q)(··q − ··qf) − Jc(q)⊤λc = 0
∇λc

L = Jc(q)··q + γc(q, ·q) = 0

Joint space force propagation

Contact acceleration constraint

L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

rearranging a bit the terms, leads to:

M(q)··q − Jc(q)⊤λc = M(q)··qf

Jc(q)··q + 0 = − γc(q, ·q)

15Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Solving the Lagrangian contact problem

The KKT conditions of the QP problem are given by:

∇··q L = M(q)(··q − ··qf) − Jc(q)⊤λc = 0
∇λc

L = Jc(q)··q + γc(q, ·q) = 0

Joint space force propagation

Contact acceleration constraint

leading to the so-called KKT dynamics:

[M(q) J⊤
c (q)

Jc(q) 0]
K(q)

[
··q

−λc] = [
M(q)··qf

−γc(q, ·q)]

L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

rearranging a bit the terms, leads to:

M(q)··q − Jc(q)⊤λc = M(q)··qf

Jc(q)··q + 0 = − γc(q, ·q)

15Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Solving the Lagrangian contact problem

The KKT conditions of the QP problem are given by:

∇··q L = M(q)(··q − ··qf) − Jc(q)⊤λc = 0
∇λc

L = Jc(q)··q + γc(q, ·q) = 0

Joint space force propagation

Contact acceleration constraint

leading to the so-called KKT dynamics:

[M(q) J⊤
c (q)

Jc(q) 0]
K(q)

[
··q

−λc] = [
M(q)··qf

−γc(q, ·q)]
BUT, there might be one, redundant solutions or no solution at all:

wether (i) is full rank (ii) is not full rank or (ii) is not in the range space of  Jc(q) Jc(q) γc(q, ·q) Jc(q)

L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces

rearranging a bit the terms, leads to:

M(q)··q − Jc(q)⊤λc = M(q)··qf

Jc(q)··q + 0 = − γc(q, ·q)

16Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Explicit contact solution

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0

16Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Explicit contact solution
··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express as function of and ··q ··qf λc

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0

16Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Explicit contact solution
··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express as function of and ··q ··qf λc

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0
Jc(q)M−1(q)Jc(q)⊤

Gc(q)

λc + Jc(q)··qf + γc(q, ·q)

ac, f(q, ·q,··qf)

= 0

2 - Replace and get an expression depending only on ··q λc

Delassus’ matrix 
Inverse Operational Space Inertia Matrix Free contact acceleration

16Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Explicit contact solution
··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express as function of and ··q ··qf λc

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0
Jc(q)M−1(q)Jc(q)⊤

Gc(q)

λc + Jc(q)··qf + γc(q, ·q)

ac, f(q, ·q,··qf)

= 0

2 - Replace and get an expression depending only on ··q λc

Delassus’ matrix 
Inverse Operational Space Inertia Matrix Free contact acceleration

λc = − G−1
c (q) ac,f(q, ·q, ··qf)

3 - Inverse and find the optimal G(q) λc

Mass Matrix: sparse Cholesky factorization

17Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Solution: exploiting the sparsity in the Cholesky factorization of M(q)
6.4. BRANCH-INDUCED SPARSITY 111

0

1

2 3

4 5 6 7 H LT L

Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff

M(q)

6.4. BRANCH-INDUCED SPARSITY 111

0

1

2 3

4 5 6 7 H LT L

Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff

U(q) U⊤(q)

6.5. SPARSE FACTORIZATION ALGORITHMS 113

3

3 3

2 2 1

3

3 3

2 2 1

3
3 3

2 2 1

never
accessed

finished

2

3
1.

2.

3.

LTL LTDL

Hkk = Hkk

Hki = Hki/Hkk

Hij = Hij − Hki Hkj

2a.

2b.

3.

H’ki = Hki/Hkk

Hki = H’ki

Hij = Hij − H’ki Hkj

k = 7 k = 6 k = 5

1k

1. do nothing

Figure 6.4: Illustration of the factorization process

algorithm computes L and returns it in the lower triangle of H. The LTDL
algorithm computes D and L, returns D on the main diagonal, and returns the
off-diagonal elements of L below it. This works because the algorithm computes
a unit lower-triangular matrix, so its diagonal elements are known to have the
value 1, and therefore do not need to be returned.

Each algorithm has an outer loop that visits each row in turn, working from
n back to 1. At any stage in the factorization process, rows k + 1 to n are
finished, and contain rows k + 1 to n of the returned factors. Rows 1 to k can
be divided into three areas, as shown in the diagram. Area 1 consists of just
the element Hkk; area 2 consists of elements 1 to k − 1 of row k; and area 3
consists of the triangular region from rows 1 to k − 1. A different calculation
takes place in each area, as shown in the figure. The pseudocode for the LTL
factorization performs the area-2 and area-3 calculations in two separate loops;
but the pseudocode for the LTDL factorization interleaves these calculations
in such a way that it never needs to remember more than one H ′

ki value at any
point. The current remembered value is stored in the local variable a.

The inner loops are designed to iterate only over the values λ(k), λ(λ(k)),
and so on. This is where the sparsity is exploited. In effect, the algorithms
know where the zeros are, and simply skip over them. Figure 6.4 illustrates the
cost reduction by showing the first three steps in the factorization of the matrix
H from Figure 6.3. At k = 7, the algorithms perform two lots of the area-2
calculation and three lots of the area-3 calculation; and similarly at k = 6 and
k = 5. This is far fewer than the number of calculations that would have been
necessary if there had been no zeros.

The total complexity is instead of  
when using a dense Cholesky decomposition

O(N2) O(N3)
Cholesky factorization

1.

2.
3.

Uk,k = Mk,k

Uk,i = Mk,i /Uk,k
Ui, j = Mi, j − Uk,i Uk, j

Goal: compute without computing Gc(q) def= Jc(q)M−1(q)J⊤
c (q) M−1(q)

18Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Maximum Dissipation Principle
The contact forces fulfill the relation: λc

Gc(q)λc + ac, f(q, ·q, ··qf) = 0

From an energetic point of view, this solution minimizes: 
min

λc

1
2

λ⊤
c Gc(q)λc + λ⊤

c ac, f(q, ·q, ··qf)

contact/interaction forces

gravity

18Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Maximum Dissipation Principle
The contact forces fulfill the relation: λc

Gc(q)λc + ac, f(q, ·q, ··qf) = 0

From an energetic point of view, this solution minimizes: 
min

λc

1
2

λ⊤
c Gc(q)λc + λ⊤

c ac, f(q, ·q, ··qf)

or using a : 

max

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf)

ac(q, ·q,··q)

)
min

··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + ·Jc(q, ·q) ·q = 0

contact/interaction forces

gravity

18Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

The Maximum Dissipation Principle
The contact forces fulfill the relation: λc

Gc(q)λc + ac, f(q, ·q, ··qf) = 0

From an energetic point of view, this solution minimizes: 
min

λc

1
2

λ⊤
c Gc(q)λc + λ⊤

c ac, f(q, ·q, ··qf)

or using a : 

max

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf)

ac(q, ·q,··q)

)
min

··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + ·Jc(q, ·q) ·q = 0

The contact forces then tend to maximize the dissipation of the kinetic energy!

contact/interaction forces

gravity

dual problem: maximum dissipation primal problem: least action principle

Analytical Derivatives 
of Rigid Contact Dynamics

Analytical Derivatives of Robot Dynamics

20Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Inverse Dynamics Forward Dynamics

τ = ID (q, ·q, ··q, λc) ··q = FD(q, ·q, τ, λc)

Numerical Optimal Control or Reinforcement Learning approaches require 
access to Forward or Inverse Dynamics functions and their partial derivatives

∂ID
∂q

,
∂ID
∂ ·q

,
∂ID
∂··q

,
∂ID
∂λc

∂FD
∂q

,
∂FD
∂ ·q

,
∂FD
∂τ

,
∂FD
∂λc

Classic ways to evaluate Numerical Derivatives

21Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Finite Differences

> Consider the input function as a black-box
𝗒 = 𝖿(𝗑)

> Add a small increment on the input variable

𝖽𝗒
𝖽𝗑

≈
𝖿(𝗑 + 𝖽𝗑) − 𝖿(𝗑)

𝖽𝗑

Pros
> Works for any input function

> Easy implementation

Cons
> Not efficient

> Sensitive to numerical rounding errors

Classic ways to evaluate Numerical Derivatives

21Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Finite Differences

> Consider the input function as a black-box
𝗒 = 𝖿(𝗑)

> Add a small increment on the input variable

𝖽𝗒
𝖽𝗑

≈
𝖿(𝗑 + 𝖽𝗑) − 𝖿(𝗑)

𝖽𝗑

Pros
> Works for any input function

> Easy implementation

Cons
> Not efficient

> Sensitive to numerical rounding errors

Automatic Differentiation

> This time, we know the elementary operations in f
𝗒 = 𝖿(𝗑) = 𝖺 . 𝖼𝗈𝗌(𝗑)

> Apply the chain rule formula

and use derivatives of basic functions

𝖽𝗒
𝖽𝗑

=
𝖽 𝖺
𝖽𝗑

. 𝖼𝗈𝗌(𝗑) + 𝖺 .
𝖽 𝖼𝗈𝗌(𝗑)

𝖽𝗑
= − 𝖺 . 𝗌𝗂𝗇(𝗑)

Pros
> Efficient frameworks

> Very accurate

Cons
> Requires specific implementation

> Not able to exploit spatial algebra derivatives

=0

Analytical Derivatives of Dynamics Algorithms

22Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Why analytical derivatives?
We must exploit the intrinsic geometry of the differential operators

involved in rigid motions

d R
dt

= R [Ω]×

orientation matrix

velocity vector

Ω

Analytical Derivatives of Dynamics Algorithms

22Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Why analytical derivatives?
We must exploit the intrinsic geometry of the differential operators

involved in rigid motions

Summary of the methodology
Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm

AND exploiting the sparsity of spatial operations

96 CHAPTER 5. INVERSE DYNAMICS

Basic Equations:

v0 = 0

a0 = −ag

vi = vλ(i) + Si q̇i

ai = aλ(i) + Si q̈i + Ṡi q̇i

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − fx
i +

∑

j∈µ(i) fj

τi = ST
i fi

Equations in Body Coordinates:

v0 = 0

a0 = −ag

vJi = Si q̇i

cJi = S̊i q̇i

vi = iXλ(i) vλ(i) + vJi

ai = iXλ(i) aλ(i) + Si q̈i + cJi + vi × vJi

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − iX∗
0 fx

i +
∑

j∈µ(i)
iX∗

j fj

τi = ST
i fi

Algorithm:

v0 = 0
a0 = −ag

for i = 1 to NB do

[XJ, Si, vJ, cJ] =
jcalc(jtype(i), qi, q̇i)

iXλ(i) = XJ XT(i)

if λ(i) ≠ 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

ai = iXλ(i) aλ(i) + Si q̈i

+ cJ + vi × vJ

fi = Ii ai + vi ×∗ Ii vi − iX∗
0 fx

i

end
for i = NB to 1 do

τi = ST
i fi

if λ(i) ≠ 0 then

fλ(i) = fλ(i) + λ(i)X∗
i fi

end

end

Table 5.1: The recursive Newton-Euler equations and algorithm

In this equation, we have assumed that the external forces emanate from outside
the system, and have therefore assumed that they are expressed in absolute (i.e.,
body 0) coordinates. Equations 5.16 to 5.20, together with 5.9 and 5.11, are
the equations of the body-coordinates version of the recursive Newton-Euler
algorithm.

Algorithm Details

Table 5.1 shows the pseudocode for the body-coordinates version of the algo-
rithm, together with the equations for both the basic version and the body-
coordinates version. Bear in mind that the symbols vi, ai, etc. in the body-
coordinates version are expressed in body coordinates, whereas the same sym-
bols in the basic version represent either abstract vectors or coordinate vectors
in an unspecified common coordinate system.

The two-pass structure of the algorithm is evident from the two for loops in
the pseudocode. The symbols XJ, vJ and cJ are local variables that take new
values on each iteration of the first loop. If the tree contains joints for which
the velocity variables are not the derivatives of the position variables, then

The Recursive Newton-Euler algorithm 
 to compute c omp. ute τ = ID(q, ·q, ··q)

d R
dt

= R [Ω]×

orientation matrix

velocity vector

Ω

Analytical Derivatives of Dynamics Algorithms

22Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Why analytical derivatives?
We must exploit the intrinsic geometry of the differential operators

involved in rigid motions

Summary of the methodology
Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm

AND exploiting the sparsity of spatial operations

96 CHAPTER 5. INVERSE DYNAMICS

Basic Equations:

v0 = 0

a0 = −ag

vi = vλ(i) + Si q̇i

ai = aλ(i) + Si q̈i + Ṡi q̇i

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − fx
i +

∑

j∈µ(i) fj

τi = ST
i fi

Equations in Body Coordinates:

v0 = 0

a0 = −ag

vJi = Si q̇i

cJi = S̊i q̇i

vi = iXλ(i) vλ(i) + vJi

ai = iXλ(i) aλ(i) + Si q̈i + cJi + vi × vJi

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − iX∗
0 fx

i +
∑

j∈µ(i)
iX∗

j fj

τi = ST
i fi

Algorithm:

v0 = 0
a0 = −ag

for i = 1 to NB do

[XJ, Si, vJ, cJ] =
jcalc(jtype(i), qi, q̇i)

iXλ(i) = XJ XT(i)

if λ(i) ≠ 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

ai = iXλ(i) aλ(i) + Si q̈i

+ cJ + vi × vJ

fi = Ii ai + vi ×∗ Ii vi − iX∗
0 fx

i

end
for i = NB to 1 do

τi = ST
i fi

if λ(i) ≠ 0 then

fλ(i) = fλ(i) + λ(i)X∗
i fi

end

end

Table 5.1: The recursive Newton-Euler equations and algorithm

In this equation, we have assumed that the external forces emanate from outside
the system, and have therefore assumed that they are expressed in absolute (i.e.,
body 0) coordinates. Equations 5.16 to 5.20, together with 5.9 and 5.11, are
the equations of the body-coordinates version of the recursive Newton-Euler
algorithm.

Algorithm Details

Table 5.1 shows the pseudocode for the body-coordinates version of the algo-
rithm, together with the equations for both the basic version and the body-
coordinates version. Bear in mind that the symbols vi, ai, etc. in the body-
coordinates version are expressed in body coordinates, whereas the same sym-
bols in the basic version represent either abstract vectors or coordinate vectors
in an unspecified common coordinate system.

The two-pass structure of the algorithm is evident from the two for loops in
the pseudocode. The symbols XJ, vJ and cJ are local variables that take new
values on each iteration of the first loop. If the tree contains joints for which
the velocity variables are not the derivatives of the position variables, then

The Recursive Newton-Euler algorithm 
 to compute c omp. ute τ = ID(q, ·q, ··q)

d R
dt

= R [Ω]×

Outcome
A simple but efficient algorithm, relying on spatial algebra

AND keeping a minimal complexity of O(Nd) WHILE the state of the art is O(N2)

orientation matrix

velocity vector

Ω

Benchmarks of analytical derivatives

23Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Inverse Dynamics Forward Dynamics

100102

Inverse Dynamics

Analytical Derivatives

Finite Differences

1 µs

3 µs

21 µs

100 101 102

Forward Dynamics

Analytical Derivatives

Finite Differences

1 µs

5 µs

22 µs

Benchmarks of analytical derivatives

23Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Inverse Dynamics Forward Dynamics

100102

Inverse Dynamics

Analytical Derivatives

Finite Differences

2 µs

7 µs

88 µs

100 101 102

Forward Dynamics

Analytical Derivatives

Finite Differences

4 µs

14 µs

94 µs

100102

Inverse Dynamics

Analytical Derivatives

Finite Differences

1 µs

3 µs

21 µs

100 101 102

Forward Dynamics

Analytical Derivatives

Finite Differences

1 µs

5 µs

22 µs

Benchmarks of analytical derivatives

23Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Inverse Dynamics Forward Dynamics

100102

Inverse Dynamics

Analytical Derivatives

Finite Differences

5 µs

16 µs

452 µs

100 101 102

Forward Dynamics

Analytical Derivatives

Finite Differences

9 µs

45 µs

470 µs

100102

Inverse Dynamics

Analytical Derivatives

Finite Differences

2 µs

7 µs

88 µs

100 101 102

Forward Dynamics

Analytical Derivatives

Finite Differences

4 µs

14 µs

94 µs

100102

Inverse Dynamics

Analytical Derivatives

Finite Differences

1 µs

3 µs

21 µs

100 101 102

Forward Dynamics

Analytical Derivatives

Finite Differences

1 µs

5 µs

22 µs

Analytical Derivatives of Contact Dynamics

24Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

Remind that the contact dynamics is provided by:

 [M(q) J⊤
c (q)

Jc(q) 0]
K(q)

[
··q

−λc] = [
M(q)··qf

−γc(q, ·q)]

Without too much difficulty, one can show that the contact derivatives are given by:

∂··q
∂x

−
∂λc

∂x

= − K−1(q)
∂ID
∂x (q, ·q, ··q, λc)

∂ac

∂x (q, ·q, ··q)

Only depends on known analytical derivatives

The Rigid Contact Problem 
unilateral contacts

Unilateral Contact Model

26Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

contact/interaction forces

gravity

When dealing with unilateral contact conditions,  
three conditions are required:

Unilateral Contact Model

26Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

contact/interaction forces

gravity

When dealing with unilateral contact conditions,  
three conditions are required:

Maximum dissipation:  
the contact forces should dissipate at most the kinetic energy

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf))

Unilateral Contact Model

26Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

contact/interaction forces

gravity

When dealing with unilateral contact conditions,  
three conditions are required:

Maximum dissipation:  
the contact forces should dissipate at most the kinetic energy

Complementary condition (Signorini’s conditions):  
the floor can only push (no pulling) + no force when the contact is about to open

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf))

λn
c

an
c

0 ≤ λc,n ⊥ ac,n ≥ 0

Unilateral Contact Model

26Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

contact/interaction forces

gravity

When dealing with unilateral contact conditions,  
three conditions are required:

Maximum dissipation:  
the contact forces should dissipate at most the kinetic energy

Complementary condition (Signorini’s conditions):  
the floor can only push (no pulling) + no force when the contact is about to open

Friction cone constraint (Coulomb law):  
the lateral forces are bounded by the normal force

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf))

λ2
c,x + λ2

c,y ≤ μλc,n

λn
c

an
c

0 ≤ λc,n ⊥ ac,n ≥ 0

Unilateral Contact Problem

27Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

contact/interaction forces

gravity

The contact problem then corresponds to  
a so-called Nonlinear Complementary Problem:

min
λc

1
2

λ⊤
c Gc(q)λc + λ⊤

c ac, f(q, ·q, ··qf)

λ2
c,x + λ2

c,y ≤ μλc,n

0 ≤ λc,n ⊥ ac,n ≥ 0

maximum dissipation

Coulomb friction

contact complementarity

which is nonconvex (hard to solve)!

The Relaxed Contact Problem 
a mix between rigid and soft

The Relaxed Contact Problem

29Memmo Summer School — Contact Dynamics in Robotics — Justin Carpentier

contact/interaction forces

gravity

The contact problem can be relaxed by  
removing the complementarity condition AND regularization the forces:

min
λc

1
2

λ⊤
c (Gc(q)+R) λc + λ⊤

c ac, f(q, ·q, ··qf)

λ2
c,x + λ2

c,y ≤ μλc,n

0 ≤ λc,n ⊥ ac,n ≥ 0

maximum dissipation 
+ regularization

Coulomb friction

No contact
complementarity

which becomes convex (easier to solve)  
but with some physical inconsistencies!

