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Contact: the Physical Problem

%
&\’ The poly-articulated system dynamics

: \‘~ s driven by the so-called Lagrangian dynamics:

oy | N\ M@i + Cg.q) + G(g) = 7

Joseph-Louis Lagrange

el —

% Mass Coriolis Gravit Motor
, Matrix centrifugal y torque
L
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Contact: the Physical Problem

The poly-articulated system dynamics

IS driven by the so-called Lagrangian dynamics:

Joseph-Louis Lagrange
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Mass Coriolis Gravit Motor
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The poly-articulated system dynamics

M(q)g + C(g,q) + G(q) = 7

Mass Coriolis Gravit Motor
Matrix centrifugal y torque

contact/interaction forces

IS driven by the so-called Lagrangian dynamics:

Joseph-Louis Lagrange
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Joseph-Louis Lagrange

The poly-articulated system dynamics
IS driven by the so-called Lagrangian dynamics:

M(@)ig + Clg.q) + Gl@) = © + J (9,

Mass Coriolis Gravit Motor External
Matrix centrifugal y torque forces

contact/interaction forces
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The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree

The Articulated Body Algorithm

j = ForwardDynamics (g, ¢, 7, /)

Simulation
Control

7 = InverseDynamics (g, ¢. 4, /)

The Recursive Newton-Euler Algorithm

Mg + Clq.q) + Glg@) = v + J (@),

Rigid Body 7

Dynamics
Algorithms

Roy Featherstone

Roy Featherstone

cLa—

Mass Coriolis Gravit Motor External
Matrix centrifugal y torque forces
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The Rigid Body Dynamics Algorithms

Goal: exploit at best the sparsity induced by the kinematic tree

Rigid Body 7

Dynamics

The Articulated Body Algorithm Algorithms

j = ForwardDynamics (g, ¢, 7, /)

SI Mmu |at | on Roy Featherstone
Control

7 = InverseDynamics (g, ¢. 4, /)

The Recursive Newton-Euler Algorithm /
j . . B T
— M(q)g + C(q.9) + G(q) = v + J. (94
| Mass Coriolis Gravit Motor External
"""""" Matrix centrifugal vity torque forces
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Gaol of this class

Understand the various approaches of the state of the art to compute /IC IN:

Mg + Clq.q) + Glg) = 7 + J (q)A,

contact/interaction forces
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Gaol of this class

Understand the various approaches of the state of the art to compute /IC N:

Mg + Clq.q) + Glg) = 7 + J (q)A,

Soft contact | 2 spring-damper model
Z Dbilateral contact model

Rigid contact
J Z unilateral contact model

contact/interaction forces
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Gaol of this class

Understand the various approaches of the state of the art to compute /IC N:

Mg + Clq.q) + Glg) = 7 + J (q)A,

Soft contact | 2 spring-damper model

2 bilateral contact model

Rigid contact .
J Z unilateral contact model

Mixed contact | 7 the relaxed contact model

contact/interaction forces
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The Soft Contact Problem









Soft contact: the spring-damper model
This Is the simplest contact model, very intuitive and straightforward to implement

This contact model is defined by the spring k and the damper d quantities, reading:

Q n __ _ _ ; the max function means:
/IC o IIlaX( k. p d. p’O) the ground can ONLY push
| % = |
0 value of k + 00
soft
. i
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Soft contact: the spring-damper model

This Is the simplest contact model, very intuitive and straightforward to implement

BUIT

not relevant to model rigid interface (k - «), requires stable integrator (stiff equation)
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The Rigid Contact Problem

bilateral contacts
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The Least-Action Principle

"Nature s thrifty in all its actions'

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

Pierre-Louis Maupertuis
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The Least-Action Principle

"Nature s thrifty in all its actions'

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity

Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

}ﬂ1 (dx>2
Si=| —m|— ) —mgxdt
;2 dt
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The Least-Action Principle

"Nature is thrifty in all its actions "

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity
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Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

rz ! (dx>2
Si=| —m|— ) —mgxdt
q 2 dt

dr

21 (dx>2
—m — mgx dt
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The Least-Action Principle

"Nature is thrifty in all its actions "

Pierre-Louis Maupertuis

‘—‘

P, -

This statement applies for many (almost all) physical problems, from Mechanics to Relativity _-f~~'-‘-§;,

- -
- . ‘
e TR

Pierre-Louis Maupertuis

In Mechanics, it corresponds to the minimization of the action, the integral of the Kinetic - Potential energies over time

12 1 dx 2 2 1 dx :
Si=| —m|— ) —mgxdt < S,=| —m|— ) —mgxdt
2 dt q 2 dt

The solution Is a
stationary point, i.e 0§ = 0
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The Least Action Principle as a classic QP

Problem: knowing g and ¢, we aim at retrieving g and 4.

least distance w.r.t to the

unconstrained acceleration a metric induced by the

. 1| ~ — Kinetic energy
min g -l
q

— gap between
C(Q) T O floor and foot

contact/interaction forces

where E vy ) (T - C(q,q) — G(q)) s the so-called free acceleration (without constraint)
V 4 TIT
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The Least Action Principle as a classic QP

Problem: knowing g and ¢, we aim at retrieving g and 4.

least distance w.r.t to the

unconstrained acceleration a metric induced by the

. 1| |2/ Kinetic energy . 1 3 e 11D
_ oo _ o0 mln — —
m.q.ln ) It QfHM(q) ; N 19 quM(CI)
clq) =0 Fooes c(q) =0
contact/interaction forces
.. def . _ . . . . .
where Gy = M 1(q)(f - C(q,q) — G(q)) s the so-called free acceleration (without constraint)
. i
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The Least Action Principle as a classic QP

Problem: knowing g and ¢, we aim at retrieving g and 4.

least distance w.r.t to the

unconstrained acceleration a metric induced by the

. 1| |2/ Kinetic energy . 1 N -
_ ) _ oo mln — —
m.q.ln 2 It QfHM(q) ; 0 19 quM(CI)
c(@) =0 550 c(q) =0

index reduction

= time derivation k» Jc(q) q p— O
index reduction k JC(q) q + jc(q9 q)q — ()

v.(q,9)

\_ ),
the constraint differentiated twice w.r.t. time

contact/interaction forces

where ¢y et M~(q) (T — (C(q,q) — G(q)) is the so-called free acceleration (without constraint)

|

y 4
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The Least Action Principle as a classic QP

Problem: we have now formed an equality-constrained QP.

1
[ ] [ I} [ I ) 2
min — —
b]’ 2 Hq QfHM(q)

J(@)g+v(q,q) =0
How to solve it? Where do the contact forces lie”?

contact/interaction forces
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The Least Action Principle as a classic QP

Problem: we have now formed an equality-constrained QP.

1
L4 o0 o0 2
min —||qg —¢q
i 9 H fHM(Q)

J(@)g+v(q,q) =0
How to solve it? Where do the contact forces lie”?

The solution can be retrieved by deriving
the KKT conditions of the QP problem via the so-called Lagrangian:

dual variable = contact forces

. L. .0 N .
L(G, 20 = Z1d = Gl = 4 (Vel@)d + 19, D)
| | |

contact/interaction forces

cost function equality constraint
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(e

Solving the Lagrangian contact problem

dual variable = contact forces

L(g, 4.) = El\q o R VAC) B ACN))
I | I |
cost function equality constraint

cLa—
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(e

Solving the Lagrangian contact problem

dual variable = contact forces

L(g, 4.) = 5”61 L e CAC) RS ACRN)
I | I |
cost function equality constraint

The KKT conditions of the QP problem are given by:
VL =M(q)§— gy —Jq) A = () Joint space force propagation
Vﬂcl‘ — Jc(q)q -+ ]/C(q, q) — () Contact acceleration constraint

cLa—
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(e

Solving the Lagrangian contact problem

dual variable = contact forces

L(g, 4.) = El\q L e CAC) RS ACRN)
I | I |
cost function equality constraint

The KKT conditions of the QP problem are given by:
VL =M(q)§— gy —Jq) A = () Joint space force propagation
V%L — Jc(q)q -+ ]/C(q, q) — () Contact acceleration constraint

rearranging a bit the terms, leads to:

M(q)g — J (@) A, = M(q)gy

J(@)g+0=-y.q9,9)

cLa—
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(e

Solving the Lagrangian contact problem

dual variable = contact forces

L(g, 4.) = El\q L e CAC) RS ACRN)
I | I |
cost function equality constraint

The KKT conditions of the QP problem are given by:

VqL — M(q)(q — qf) — Jc(q)T/lc — O Joint space force propagation
V/ch — Jc(q)q + J/C(q, q) — () Contact acceleration constraint
rearranging a bit the terms, leads to: leading to the so-called KKT dynamics:
. . M(q) J! j M(q)g
M(q)g — J(q)" A = M(q)§ [J Eq; c éq)] [ ,16]] — [ ( ! q;]
I +0 = ~7.(q.9) o R e
K(g)
777 3 Memmo Summer School —  Contact Dynamics in Robotics —  Justin Carpentier 15 ENS



Solving the Lagrangian contact problem

dual variable = contact forces

L(g, 4.) = El\q L e CAC) RS ACRN)
I | I |
cost function equality constraint

The KKT conditions of the QP problem are given by:

VqL — M(q)(q — qf) —_ Jc(q)T/lC — O Joint space force propagation
V/ch — Jc(q)q + J/C(q, q) — () Contact acceleration constraint
rearranging a bit the terms, leads to: leading to the so-called KKT dynamics:
. . M(g) J! 7 M(q)g
M(q)g — J(q)" A = M(q)§ [J Eq; c éq)] [ /Iq] — [ ((Q)f])f]
I +0 = ~7.(9.9) o R e

qu)

BUT, there might be one, redundant solutions or no solution at all:
wether () J.(q) is full rank (i) J.(g) is not full rank or (i) 7.(g, ¢) is not in the range space of J_.(g)
g i
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(e

Explicit contact solution

We can analytically inverse the system
to obtain the solution in 3 main steps:

M(@)f — I(9) 2, = M(9)i; |

J@)+7.9.9) = 0]

cLa—
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(e

Explicit contact solution

1 - Express ¢ as function of 4, and 1,

[ G =G4+ M (9Jq)" 2 ]

We can analytically inverse the system
to obtain the solution in 3 main steps:

M(@)f — I(9) 2, = M(9)i; |

J@)+7.9.9) = 0]

cLa—
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(e

Explicit contact solution

1 - Express ¢ as function of 4, and 1,

[ G =G4+ M (9Jq)" 2 ]

We can analytically inverse the system
to obtain the solution in 3 main steps:

cLa—

3 - . 2 - Replace g and get an expression depending only on 4.
[M(q)q —J(q) A, = M(q)qu s > " 3 N\
JAPM~ (@) (q) A, + I DG+ v(q,9) =0
(@G +71dq.9) =0 » G oYY
| 0O Del_assus’ matrix . . Free contact acceleration
\ nverse Operational Space Inertia Matrix J
L
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Explicit contact solution

We can analytically inverse the system
to obtain the solution in 3 main steps:

1 - Express ¢ as function of 4, and 1,

[ G =G4+ M (9Jq)" 2 ]

3 - . 2 - Replace g and get an expression depending only on 4.
[M(q)q —J(q) A, = M(q)qu s > " 3 N\
JAPM~ (@) (@) A+ I (PG +7.q,9) =0
[ JC(Q)q + yc(Qa q) = OJ g k ch(q) J k Clc,f(qvaélaiif) J
\ Inverse Ope?aetlica)isalljss’pmaggil);ertia Matrix Free contact acceleration J
3 - Inverse G(g) and find the optimal 4.
b= = G7\(@) a0 (4.6 )
)
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_ Mass Matrix: sparse Cholesky factorization

Goal: compute G.(q) = J (9)M~'(g)JT (¢) without computing M~'(q)

Solution: exploiting the sparsity in the Cholesky factorization of M(qg)

Rigid Body 7 *~ M(q) U(g) U
Dynamics
Algorithms
Roy Featherstone
— - X

A never

accessed Cholesky factorization 0 3

3 1 Ugg = /M The total complexity is O(N*) instead of O(N~)
2. U, =M,,/U, - »
l‘e 2 1 U MU, when using a dense Cholesky decomposition
finished

2l — Memmo Summer School — Contact Dynamics in Robotics —  Justin Carpentier




The Maximum Dissipation Principle

The contact forces 4. fulfill the relation:
Gc(q)/lc T ac,f(qa q, q]f) =0

From an energetic point of view, this solution minimizes:

1
min —24. GAq@)4. + A a. (4.4,
2 o) C c(q) C C c,f(q q Qf)

C

contact/interaction forces

&zz&la/- Memmo Summer School — Contact Dynamics in Robotics —  Justin Carpentier



The Maximum Dissipation Principle

The contact forces 4. fulfill the relation:
Gc(q)ﬂc T ac,f(qa q Qf) =0

From an energetic point of view, this solution minimizes:

1
min —24. GAq@)4. + A a. (4.4,
2 o) C c(q) C C c,f(q q Qf)

C

Or using a max:

1
max — _/I(ZF(GC(Q)/IC + 2/I(TCZC f(Q9 49 Qf))
p 2 ’ J

a.(q,9,4)

contact/interaction forces

&z'z/a/- Memmo Summer School — Contact Dynamics in Robotics —  Justin Carpentier 18 ENS



The Maximum Dissipation Principle

The contact forces 4. fulfill the relation:
Gc(q)ﬂc T ac,f(qa q Qf) =0

From an energetic point of view, this solution minimizes:

N S T L.
min —A. G(@)A. + 4. a. £q g, G;)

A 2
Or using a max:
: - min ~ 14 — G2,
max — EAJ (GADA + 224 a. (q. ¢, G))) S Al M(g)
| a.(q.G.4) J J(@g+J(q.4)g =0 |
dual problem: maximum dissipation primal problem: least action principle

contact/interaction forces

The contact forces then tend to maximize the dissipation of the kinetic energy!

| |
. i
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Analytical Derivatives
of Rigid Contact Dynamics



(e

Analytical Derivatives of Robot Dynamics

Numerical Optimal Control or Reinforcement Learning approaches require
access to Forward or Inverse Dynamics functions and their partial derivatives

Inverse Dynamics Forward Dynamics
t=1ID <q, q, q, /16) q — FD(qa qa i, Ac)
\ olD oID oID JID \ OoFD OFD oOFD OFD
dog 9dg 0§ O0A, dg 9§ ot 04,
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Classic ways to evaluate Numerical Derivatives

Finite Differences

> Consider the input function as a black-box
y = f(x)
> Add a small increment on the input variable
dy f(x+ dx) —f(x)
dx ~ dx

Pros
> Works for any input function

> Easy implementatio/
Cons

> Not efficient
> Sensitive to numerical rounding errors
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Classic ways to evaluate Numerical Derivatives

Finite Differences

> Consider the input function as a black-box
y = f(x)
> Add a small increment on the input variable
dy f(x+ dx)—f(x)
dx ~ dx

Pros
> Works for any input function

> Easy implementatio/
Cons

> Not efficient
> Sensitive to numerical rounding errors

Automatic Differentiation

> This time, we know the elementary operations in f
y = f(x) = a.cos(x)

> Apply the chain rule formula
and use derivatives of basic functions

dy da d cos(x) .
— =—.cos(x) +a. = —a.sin(x)
dx  dx dx
=0
Pros

> Efficient frameworks

> Very aCCurate/
Cons

> Requires specific implementation
> Not able to exploit spatial algebra derivatives

Memmo Summer School — Contact Dynamics in Robotics —  Justin Carpentier
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Analytical Derivatives of Dynamics Algorithms

Why analytical derivatives?

We must exploit the intrinsic geometry of the differential operators
involved In rigid motions

orientation matrix
dR
R Q|

9

dt ~><\
velocity vector
ziaa — Memmo Summer School — Contact Dynamics in Robotics —  Justin Carpentier




Analytical Derivatives of Dynamics Algorithms

The Recursive Newton-Euler algorithm

to compute 7 = 1D(q, q, Q)

Algorithm:
Vo — 0
apgp — —Qaqg
for i =1 to Ng do
X3, 85,v3,¢3] =
_ jcalc(jtype(i), q;, qz)
Xy = X5 X7 (2)
if A\(¢) # 0 then
iX, — iXA(i) /\(z')XO
end
V; = Z.X)\(i) V(i) T+ VJ
a; = Xyu) axi) + Si 4;
+Cj +v; X U3
fi=TLia; +v; x* Lv, —"X{ f
end
for : = Ng to 1 do

=5, f,
if A\(¢) # 0 then
oy = hey + MOXFf,
end
end

(rezia—

Why analytical derivatives?

We must exploit the intrinsic geometry of the differential operators
involved In rigid motions

orientation matrix Q)
dR
e R [g‘]x\

velocity vector

Summary of the methodology

Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm
AND exploiting the sparsity of spatial operations
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Analytical Derivatives of Dynamics Algorithms

The R Ive Newton-Eul lgorith . . .
"t compute 7= D@, 4.6) Why analytical derivatives?
ﬁ;gjghm: We must exploit the intrinsic geometry of the differential operators

involved In rigid motions

apgp — —Qaqg
for i =1 to Ng do

(X5, S;,v5,¢5] = orientation matrix Q
jeale(jtype(i), q;, q;) /
Xy = X5 X7(7) d R
if \(i) £ 0 then =R [Q]
iX, — iXA(i) )X, dt X
end \

velocity vector

V; = Z:X)\(i) V(i) T+ VJ

a; = Xyu) axi) + Si 4;
+ey+ v x vy Summary of the methodology

g e o= X 1 Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm
for:_i; JEBT;O 0 AND exploiting the sparsity of spatial operations

if A(i) # 0 then

o= HOX Outcome
end A simple but efficient algorithm, relying on spatial algebra

AND keeping a minimal complexity of O(Nd) WHILE the state of the art is O(N?2)
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Benchmarks of analytical derivatives

Inverse Dynamics Forward Dynamics

1 us {i Inverse Dynamics
3 us Analytical Derivatives

Forward Dynamics 1us

Analytical Derivatives 5 us

21 us! \ Finite Differences

102 10°

Finite Differences ‘ l22 Us

10Y 10’ 102

cLa—
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Benchmarks of analytical derivatives

Inverse Dynamics

1 us {i Inverse Dynamics

3 us Analytical Derivatives

21 us! \ Finite Differences

102 10°

Forward Dynamics

Forward Dynamics 1us

Analytical Derivatives 5 us

Finite Differences ‘ l22 Us

10Y 10’ 102

2 LS Inverse Dynamics

7 Us Analytical Derivatives

88 us ‘ \ Finite Differences

(e

cLa—

102 10Y

Forward Dynamics 4 us

Analytical Derivatives 14 us

Finite Differences ‘ l94 Us

10Y 10’ 102
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Benchmarks of analytical derivatives

Inverse Dynamics Forward Dynamics

1 ys l{f Inverse Dynamics Forward Dynamics 1 s

3 us Analytical Derivatives

21 us! \ Finite Differences

102 10°

Analytical Derivatives 5 us

Finite Differences ‘ l22 Us

10Y 10’ 102

Forward Dynamics 4 us

2 LS Inverse Dynamics

Analytical Derivatives 14 us

Finite Differences ‘ l94 Us

10Y 10’ 102

7 Us Analytical Derivatives

88 us ‘ \ Finite Differences

102 10Y

Inverse Dynamics Forward Dynamics 9 us

16 us Analytical Derivatives Analytical Derivatives 45 s
452 s Finite Differences Finite Differences ‘ l470 Us
10° 10° 109 10" 102
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(e

Analytical Derivatives of Contact Dynamics

M(g) JN(q) [ q] [ m@yq,
JC(Q) 0 _/16 _}/C(q, Q)
KZq)

Without too much difficulty, one can show that the contact derivatives are given by:

Remind that the contact dynamics Is provided by:

cLa—

r ~N
oq olD ..
M e Y (9,4, 4,4.)
a/lc - (Q) aCZC o )
T ax ax (Q’ q9 Q)
_ y
Only depends on known analytical derivatives
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The Rigid Contact Problem

unilateral contacts



Unilateral Contact Model

When dealing with unilateral contact conditions,
three conditions are required:

contact/interaction forces
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Unilateral Contact Model

When dealing with unilateral contact conditions,
three conditions are required:

7 Maximum dissipation:
the contact forces should dissipate at most the kinetic energy

1
| | max — =4 (GAqA. + 24 a. (q. 4. §p))
contact/interaction forces w2 J f
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Unilateral Contact Model

When dealing with unilateral contact conditions,
three conditions are required:

7 Maximum dissipation:
the contact forces should dissipate at most the kinetic energy

Complementary condition (Signorini’s conditions):
the floor can only push (no pulling) + no force when the contact is about to open

1
| | max — —4/ (Gq)A. + 22 a. Aq. 4, G)))
contact/interaction forces Ae 2 J / 4"

0<A,Lla,>0
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Unilateral Contact Model

When dealing with unilateral contact conditions,
three conditions are required:

7 Maximum dissipation:
the contact forces should dissipate at most the kinetic energy

» Complementary condition (Signorini’s conditions):
the floor can only push (no pulling) + no force when the contact is about to open

2 Friction cone constraint (Coulomb law):
the lateral forces are bounded by the normal force
A

1
| | max — —4/ (Gq)A. + 22 a. Aq. 4, G)))
contact/interaction forces Ae 2 J / 4"

0 < ey L, >0 VAt Ry S b,
) L

&@’Zé,a/- Memmo Summer School — Contact Dynamics in Robotics —  Justin Carpentier 26 ENS




Unilateral Contact Problem

The contact problem then corresponds to
a so-called Nonlinear Complementary Problem:

r

| R T
mm —/1 G (A + 4. a. Aq,q, )

\//12 + A2, < i,
0<a,Lla,>0

maximum dissipation

Coulomb friction

contact complementarity

v

contact/interaction forces

which is nonconvex (hard to solve)

Memmo Summer School — Contact Dynamics in Robotics —
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The Relaxed Contact Problem
a Mix between rigid and soft



The Relaxed Contact Problem

The contact problem can be relaxed by
removing the complementarity condition AND regularization the forces:

1 T T . C .
IIllIl —/1 (G (Q)-I-R) /1 + /1 Cf(q, Q, qf) maximum dissipation

+ regularization

2 2 .
\//1 + /1 < /’t/lc,n Coulomb friction
e < q - > e No contact

C,1 G, = complementarity

which becomes convex (easier to solve)
but with some physical inconsistencies!

contact/interaction forces
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