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Contact: the Physical Problem
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M(q)··q + C(q, ·q) + G(q) = τ + J⊤
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forces

Joseph-Louis Lagrange
The poly-articulated system dynamics  

is driven by the so-called Lagrangian dynamics:
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The Rigid Body Dynamics Algorithms
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Goal: exploit at best the sparsity induced by the kinematic tree

Roy Featherstone

The Articulated Body Algorithm
··q = ForwardDynamics (q, ·q, τ, λc)

Simulation

The Recursive Newton-Euler Algorithm

τ = InverseDynamics (q, ·q, ··q, λc)
Control
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Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff
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Gaol of this class
Understand the various approaches of the state of the art to compute   in:λc

spring-damper model

bilateral contact model
unilateral contact model

the relaxed contact model

contact/interaction forces

gravity

M(q)··q + C(q, ·q) + G(q) = τ + J⊤
c (q) λc

Soft contact

Rigid contact

Mixed contact



The Soft Contact Problem
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Soft contact: the spring-damper model
This is the simplest contact model, very intuitive and straightforward to implement

λn
c = max(−k . p − d . ·p,0)

This contact model is defined by the spring  and the damper  quantities, reading:k d

the max function means: 
the ground can ONLY push

pk,d

soft rigid
0 +∞value of k
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Soft contact: the spring-damper model
This is the simplest contact model, very intuitive and straightforward to implement

BUT

pk,d

not relevant to model rigid interface ( ), requires stable integrator (stiff equation)k → ∞



The Rigid Contact Problem 
bilateral contacts
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The Least-Action Principle

Pierre-Louis Maupertuis

This statement applies for many (almost all) physical problems, from Mechanics to Relativity  

"Nature is thrifty in all its actions"
Pierre-Louis Maupertuis
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The solution is a 

stationary point, i.e δS = 0
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The Least Action Principle as a classic QP
Problem: knowing  and , we aim at retrieving  and q ·q ··q λc

min
··q

1
2

∥··q − ··qf∥2
M(q)

c(q) = 0

least distance w.r.t to the 
unconstrained acceleration a metric induced by the 

kinetic energy

gap between 
floor and foot

where  is the so-called free acceleration (without constraint)··qf
def= M−1(q)(τ − C(q, ·q) − G(q))

contact/interaction forces

gravity
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= time derivation

index reduction

the constraint differentiated twice w.r.t. time
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The Least Action Principle as a classic QP
Problem: we have now formed an equality-constrained QP. 

  

How to solve it? Where do the contact forces lie?

min
··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0

contact/interaction forces

gravity
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The Least Action Principle as a classic QP

The solution can be retrieved by deriving  
the KKT conditions of the QP problem via the so-called Lagrangian:

Problem: we have now formed an equality-constrained QP. 

  

How to solve it? Where do the contact forces lie?

min
··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + γc(q, ·q) = 0

contact/interaction forces

gravity

L(··q, λc) =
1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces
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Solving the Lagrangian contact problem
L(··q, λc) =

1
2

∥··q − ··qf∥2
M(q) − λ⊤

c (Jc(q)··q + γc(q, ·q))
cost function equality constraint

dual variable = contact forces
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Contact acceleration constraint
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Explicit contact solution

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0
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Explicit contact solution
··q = ··qf + M−1(q)Jc(q)⊤λc

1 - Express  as function of  and ··q ··qf λc

We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0
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We can analytically inverse the system  
to obtain the solution in 3 main steps:

M(q)··q − Jc(q)⊤λc = M(q)··qf
s

Jc(q)··q + γc(q, ·q) = 0
Jc(q)M−1(q)Jc(q)⊤

Gc(q)

λc + Jc(q)··qf + γc(q, ·q)

ac, f(q, ·q,··qf )

= 0

2 - Replace  and get an expression depending only on ··q λc

Delassus’ matrix 
Inverse Operational Space Inertia Matrix Free contact acceleration
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We can analytically inverse the system  
to obtain the solution in 3 main steps:
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ac, f(q, ·q,··qf )

= 0

2 - Replace  and get an expression depending only on ··q λc

Delassus’ matrix 
Inverse Operational Space Inertia Matrix Free contact acceleration

λc = − G−1
c (q) ac,f(q, ·q, ··qf)

3 - Inverse  and find the optimal G(q) λc



Mass Matrix: sparse Cholesky factorization
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Solution: exploiting the sparsity in the Cholesky factorization of M(q)
6.4. BRANCH-INDUCED SPARSITY 111
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Figure 6.3: Preservation of sparsity in the factorization H = LTL

In principle, these two matrices have the same underlying sparsity pattern, and
the choice of numbering does not affect our ability to exploit it.

It is often the case that branch-induced sparsity can affect a substantial
proportion of the elements of H. We can get a rough estimate of its beneficial
effect using the following rule of thumb: if H has a density of ρ, then the cost
of calculating it is roughly ρ times the cost of calculating a dense H of the same
size, and the cost of factorizing it is roughly ρ2 times the cost of factorizing a
dense matrix of the same size. ρ is defined to be the proportion of elements
in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff

M(q)
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in H that are not branch-induced zeros, so 0 < ρ ≤ 1. It is not unusual
to encounter densities of around 0.5, and densities close to zero are possible.
Overall, the effect of branch-induced sparsity is to make inertia-matrix methods
more efficient on branched kinematic trees than they are on unbranched trees
of the same size.

The composite-rigid-body algorithm automatically exploits branch-induced
sparsity, simply by calculating only the nonzero submatrices of H. However, if
we were to try and factorize the resulting matrix using a standard factorization
algorithm, then it would treat the matrix as dense, and perform O(n3) arith-
metic operations. Therefore, in order to fully exploit the sparsity, we need a
factorization algorithm for matrices containing branch-induced sparsity. This
turns out to be an easy problem to solve, the solution being to factorize H into
either LTL or LTDL, and design the factorization algorithm to skip over the
branch-induced zeros.

In the sparse matrix literature, the factorization H = LTL would be de-
scribed as a reordered Cholesky factorization, meaning that it is equivalent to
performing a standard Cholesky factorization on a permutation of the original
matrix (George and Liu, 1981). Likewise, the factorization H = LTDL would
be described as a reordered LDLT factorization. This implies that the LTL
and LTDL factorizations have the same numerical properties as the standard
Cholesky and LDLT factorizations.

The special property of an LTL or LTDL factorization, when applied to
a matrix containing branch-induced sparsity, is that the factorization proceeds
without fill-in. In other words, every branch-induced zero element in the matrix
remains zero throughout the factorization process. (This is proved in Feather-
stone (2005).) A factorization with this property is said to be optimal (Duff

U(q) U⊤(q)
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never
accessed

finished

2

3
1.

2.

3.

LTL LTDL

Hkk =   Hkk

Hki = Hki/Hkk

Hij = Hij − Hki Hkj

2a.

2b.

3.

H’ki = Hki/Hkk

Hki = H’ki

Hij = Hij − H’ki Hkj

k = 7 k = 6 k = 5

1k

1. do nothing

Figure 6.4: Illustration of the factorization process

algorithm computes L and returns it in the lower triangle of H. The LTDL
algorithm computes D and L, returns D on the main diagonal, and returns the
off-diagonal elements of L below it. This works because the algorithm computes
a unit lower-triangular matrix, so its diagonal elements are known to have the
value 1, and therefore do not need to be returned.

Each algorithm has an outer loop that visits each row in turn, working from
n back to 1. At any stage in the factorization process, rows k + 1 to n are
finished, and contain rows k + 1 to n of the returned factors. Rows 1 to k can
be divided into three areas, as shown in the diagram. Area 1 consists of just
the element Hkk; area 2 consists of elements 1 to k − 1 of row k; and area 3
consists of the triangular region from rows 1 to k − 1. A different calculation
takes place in each area, as shown in the figure. The pseudocode for the LTL
factorization performs the area-2 and area-3 calculations in two separate loops;
but the pseudocode for the LTDL factorization interleaves these calculations
in such a way that it never needs to remember more than one H ′

ki value at any
point. The current remembered value is stored in the local variable a.

The inner loops are designed to iterate only over the values λ(k), λ(λ(k)),
and so on. This is where the sparsity is exploited. In effect, the algorithms
know where the zeros are, and simply skip over them. Figure 6.4 illustrates the
cost reduction by showing the first three steps in the factorization of the matrix
H from Figure 6.3. At k = 7, the algorithms perform two lots of the area-2
calculation and three lots of the area-3 calculation; and similarly at k = 6 and
k = 5. This is far fewer than the number of calculations that would have been
necessary if there had been no zeros.

The total complexity is  instead of   
when using a dense Cholesky decomposition

O(N2) O(N3)
Cholesky factorization 

1.  

2.  
3.

Uk,k = Mk,k

Uk,i = Mk,i /Uk,k
Ui, j = Mi, j − Uk,i Uk, j

Goal: compute  without computing Gc(q) def= Jc(q)M−1(q)J⊤
c (q) M−1(q)



18Memmo Summer School   —  Contact Dynamics in Robotics   —   Justin Carpentier

The Maximum Dissipation Principle
The contact forces  fulfill the relation: λc

Gc(q)λc + ac, f(q, ·q, ··qf) = 0

From an energetic point of view, this solution minimizes: 
min

λc

1
2

λ⊤
c Gc(q)λc + λ⊤

c ac, f(q, ·q, ··qf)

contact/interaction forces

gravity
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The Maximum Dissipation Principle
The contact forces  fulfill the relation: λc

Gc(q)λc + ac, f(q, ·q, ··qf) = 0

From an energetic point of view, this solution minimizes: 
min

λc

1
2

λ⊤
c Gc(q)λc + λ⊤

c ac, f(q, ·q, ··qf)

or using a : 

             

max

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf)

ac(q, ·q,··q)

)
min

··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + ·Jc(q, ·q) ·q = 0

contact/interaction forces

gravity



18Memmo Summer School   —  Contact Dynamics in Robotics   —   Justin Carpentier

The Maximum Dissipation Principle
The contact forces  fulfill the relation: λc

Gc(q)λc + ac, f(q, ·q, ··qf) = 0

From an energetic point of view, this solution minimizes: 
min

λc

1
2

λ⊤
c Gc(q)λc + λ⊤

c ac, f(q, ·q, ··qf)

or using a : 

             

max

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf)

ac(q, ·q,··q)

)
min

··q

1
2

∥··q − ··qf∥2
M(q)

Jc(q) ··q + ·Jc(q, ·q) ·q = 0

The contact forces then tend to maximize the dissipation of the kinetic energy!

contact/interaction forces

gravity

dual problem: maximum dissipation primal problem: least action principle



Analytical Derivatives 
of Rigid Contact Dynamics



Analytical Derivatives of Robot Dynamics
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Inverse Dynamics Forward Dynamics

τ = ID (q, ·q, ··q, λc) ··q = FD(q, ·q, τ, λc)

Numerical Optimal Control or Reinforcement Learning approaches require 
access to Forward or Inverse Dynamics functions and their partial derivatives

∂ID
∂q

,
∂ID
∂ ·q

,
∂ID
∂··q

,
∂ID
∂λc

∂FD
∂q

,
∂FD
∂ ·q

,
∂FD
∂τ

,
∂FD
∂λc



Classic ways to evaluate Numerical Derivatives
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Finite Differences

> Consider the input function as a black-box
𝗒 = 𝖿(𝗑)

> Add a small increment on the input variable

𝖽𝗒
𝖽𝗑

≈
𝖿(𝗑 + 𝖽𝗑) − 𝖿(𝗑)

𝖽𝗑

Pros 
> Works for any input function 

> Easy implementation

Cons 
> Not efficient 

> Sensitive to numerical rounding errors
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Finite Differences

> Consider the input function as a black-box
𝗒 = 𝖿(𝗑)

> Add a small increment on the input variable

𝖽𝗒
𝖽𝗑

≈
𝖿(𝗑 + 𝖽𝗑) − 𝖿(𝗑)

𝖽𝗑

Pros 
> Works for any input function 

> Easy implementation

Cons 
> Not efficient 

> Sensitive to numerical rounding errors

Automatic Differentiation

> This time, we know the elementary operations in f
𝗒 = 𝖿(𝗑) = 𝖺 . 𝖼𝗈𝗌(𝗑)

> Apply the chain rule formula 

and use derivatives of basic functions

𝖽𝗒
𝖽𝗑

=
𝖽 𝖺
𝖽𝗑

. 𝖼𝗈𝗌(𝗑) + 𝖺 .
𝖽 𝖼𝗈𝗌(𝗑)

𝖽𝗑
= − 𝖺 . 𝗌𝗂𝗇(𝗑)

Pros 
> Efficient frameworks 

> Very accurate

Cons 
> Requires specific implementation 

> Not able to exploit spatial algebra derivatives

=0



Analytical Derivatives of Dynamics Algorithms
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Why analytical derivatives? 
We must exploit the intrinsic geometry of the differential operators  

involved in rigid motions

d R
dt

= R [Ω]×

orientation matrix

velocity vector

Ω
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Why analytical derivatives? 
We must exploit the intrinsic geometry of the differential operators  

involved in rigid motions

Summary of the methodology 
Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm 

AND exploiting the sparsity of spatial operations

96 CHAPTER 5. INVERSE DYNAMICS

Basic Equations:

v0 = 0

a0 = −ag

vi = vλ(i) + Si q̇i

ai = aλ(i) + Si q̈i + Ṡi q̇i

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − fx
i +

∑

j∈µ(i) fj

τi = ST
i fi

Equations in Body Coordinates:

v0 = 0

a0 = −ag

vJi = Si q̇i

cJi = S̊i q̇i

vi = iXλ(i) vλ(i) + vJi

ai = iXλ(i) aλ(i) + Si q̈i + cJi + vi × vJi

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − iX∗
0 fx

i +
∑

j∈µ(i)
iX∗

j fj

τi = ST
i fi

Algorithm:

v0 = 0
a0 = −ag

for i = 1 to NB do

[XJ, Si, vJ, cJ] =
jcalc(jtype(i), qi, q̇i)

iXλ(i) = XJ XT(i)

if λ(i) ≠ 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

ai = iXλ(i) aλ(i) + Si q̈i

+ cJ + vi × vJ

fi = Ii ai + vi ×∗ Ii vi − iX∗
0 fx

i

end
for i = NB to 1 do

τi = ST
i fi

if λ(i) ≠ 0 then

fλ(i) = fλ(i) + λ(i)X∗
i fi

end

end

Table 5.1: The recursive Newton-Euler equations and algorithm

In this equation, we have assumed that the external forces emanate from outside
the system, and have therefore assumed that they are expressed in absolute (i.e.,
body 0) coordinates. Equations 5.16 to 5.20, together with 5.9 and 5.11, are
the equations of the body-coordinates version of the recursive Newton-Euler
algorithm.

Algorithm Details

Table 5.1 shows the pseudocode for the body-coordinates version of the algo-
rithm, together with the equations for both the basic version and the body-
coordinates version. Bear in mind that the symbols vi, ai, etc. in the body-
coordinates version are expressed in body coordinates, whereas the same sym-
bols in the basic version represent either abstract vectors or coordinate vectors
in an unspecified common coordinate system.

The two-pass structure of the algorithm is evident from the two for loops in
the pseudocode. The symbols XJ, vJ and cJ are local variables that take new
values on each iteration of the first loop. If the tree contains joints for which
the velocity variables are not the derivatives of the position variables, then

The Recursive Newton-Euler algorithm 
   to compute c    omp.       ute                       τ = ID(q, ·q, ··q)

d R
dt

= R [Ω]×

orientation matrix

velocity vector

Ω
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Why analytical derivatives? 
We must exploit the intrinsic geometry of the differential operators  

involved in rigid motions

Summary of the methodology 
Applying the chain rule formula on each line of the Recursive Newton-Euler algorithm 

AND exploiting the sparsity of spatial operations
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Basic Equations:

v0 = 0

a0 = −ag

vi = vλ(i) + Si q̇i

ai = aλ(i) + Si q̈i + Ṡi q̇i

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − fx
i +

∑

j∈µ(i) fj

τi = ST
i fi

Equations in Body Coordinates:

v0 = 0

a0 = −ag

vJi = Si q̇i

cJi = S̊i q̇i

vi = iXλ(i) vλ(i) + vJi

ai = iXλ(i) aλ(i) + Si q̈i + cJi + vi × vJi

fB

i = Ii ai + vi ×∗ Ii vi

fi = fB

i − iX∗
0 fx

i +
∑

j∈µ(i)
iX∗

j fj

τi = ST
i fi

Algorithm:

v0 = 0
a0 = −ag

for i = 1 to NB do

[XJ, Si, vJ, cJ] =
jcalc(jtype(i), qi, q̇i)

iXλ(i) = XJ XT(i)

if λ(i) ≠ 0 then
iX0 = iXλ(i)

λ(i)X0

end

vi = iXλ(i) vλ(i) + vJ

ai = iXλ(i) aλ(i) + Si q̈i

+ cJ + vi × vJ

fi = Ii ai + vi ×∗ Ii vi − iX∗
0 fx

i

end
for i = NB to 1 do

τi = ST
i fi

if λ(i) ≠ 0 then

fλ(i) = fλ(i) + λ(i)X∗
i fi

end

end

Table 5.1: The recursive Newton-Euler equations and algorithm

In this equation, we have assumed that the external forces emanate from outside
the system, and have therefore assumed that they are expressed in absolute (i.e.,
body 0) coordinates. Equations 5.16 to 5.20, together with 5.9 and 5.11, are
the equations of the body-coordinates version of the recursive Newton-Euler
algorithm.

Algorithm Details

Table 5.1 shows the pseudocode for the body-coordinates version of the algo-
rithm, together with the equations for both the basic version and the body-
coordinates version. Bear in mind that the symbols vi, ai, etc. in the body-
coordinates version are expressed in body coordinates, whereas the same sym-
bols in the basic version represent either abstract vectors or coordinate vectors
in an unspecified common coordinate system.

The two-pass structure of the algorithm is evident from the two for loops in
the pseudocode. The symbols XJ, vJ and cJ are local variables that take new
values on each iteration of the first loop. If the tree contains joints for which
the velocity variables are not the derivatives of the position variables, then

The Recursive Newton-Euler algorithm 
   to compute c    omp.       ute                       τ = ID(q, ·q, ··q)

d R
dt

= R [Ω]×

Outcome 
A simple but efficient algorithm, relying on spatial algebra


AND keeping a minimal complexity of O(Nd) WHILE the state of the art is O(N2)

orientation matrix

velocity vector

Ω
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Inverse Dynamics Forward Dynamics
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Analytical Derivatives of Contact Dynamics 
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Remind that the contact dynamics is provided by: 

 [M(q) J⊤
c (q)

Jc(q) 0 ]
K(q)

[
··q

−λc] = [
M(q)··qf

−γc(q, ·q)]

Without too much difficulty, one can show that the contact derivatives are given by: 

 

∂··q
∂x

−
∂λc

∂x

= − K−1(q)
∂ID
∂x (q, ·q, ··q, λc)

∂ac

∂x (q, ·q, ··q)

Only depends on known analytical derivatives



The Rigid Contact Problem 
unilateral contacts



Unilateral Contact Model
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contact/interaction forces

gravity

When dealing with unilateral contact conditions,  
three conditions are required: 
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contact/interaction forces

gravity

When dealing with unilateral contact conditions,  
three conditions are required: 

Maximum dissipation:  
the contact forces should dissipate at most the kinetic energy

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf ))
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contact/interaction forces

gravity

When dealing with unilateral contact conditions,  
three conditions are required: 

Maximum dissipation:  
the contact forces should dissipate at most the kinetic energy

Complementary condition (Signorini’s conditions):  
the floor can only push (no pulling) + no force when the contact is about to open

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf ))

λn
c

an
c

0 ≤ λc,n ⊥ ac,n ≥ 0
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contact/interaction forces

gravity

When dealing with unilateral contact conditions,  
three conditions are required: 

Maximum dissipation:  
the contact forces should dissipate at most the kinetic energy

Complementary condition (Signorini’s conditions):  
the floor can only push (no pulling) + no force when the contact is about to open

Friction cone constraint (Coulomb law):  
the lateral forces are bounded by the normal force

max
λc

−
1
2

λ⊤
c (Gc(q)λc + 2λ⊤

c ac, f(q, ·q, ··qf ))

λ2
c,x + λ2

c,y ≤ μλc,n

λn
c

an
c

0 ≤ λc,n ⊥ ac,n ≥ 0



Unilateral Contact Problem
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contact/interaction forces

gravity

The contact problem then corresponds to  
a so-called Nonlinear Complementary Problem:

min
λc

1
2

λ⊤
c Gc(q)λc + λ⊤

c ac, f(q, ·q, ··qf)

λ2
c,x + λ2

c,y ≤ μλc,n

0 ≤ λc,n ⊥ ac,n ≥ 0

maximum dissipation

Coulomb friction

contact complementarity

which is nonconvex (hard to solve)!



The Relaxed Contact Problem 
a mix between rigid and soft
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contact/interaction forces

gravity

The contact problem can be relaxed by  
removing the complementarity condition AND regularization the forces:

min
λc

1
2

λ⊤
c (Gc(q)+R) λc + λ⊤

c ac, f(q, ·q, ··qf)

λ2
c,x + λ2

c,y ≤ μλc,n

0 ≤ λc,n ⊥ ac,n ≥ 0

maximum dissipation 
+ regularization

Coulomb friction

No contact 
complementarity

which becomes convex (easier to solve)  
but with some physical inconsistencies!




