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Introduction



Key Concepts

Task

• Motion

• Force

• Actuation

Rigid Contact

• similar to Task, but

• associated to reaction forces

Inverse Dynamics Formulation

• collects Tasks and

RigidContacts

• translates them into HQP

HQP Solver

• solves a HQP
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Other Concepts

Constraint

• affine function

• purely mathematical

• used to represent HQP

Robot Wrapper

• contains robot model

• provides utility functions to

compute robot quantities

• e.g., mass matrix, Jacobians

Trajectory

• maps time to vector values

• pos, vel, acc

• position and velocity can have

different sizes (Lie groups)
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Details



ConstraintBase

• A linear (affine) function

• Purely mathematical object

• “Unaware” of what the function represents

Three kinds of constraints:

• Equalities, represented by matrix A and vector a:

Ax = a

• Inequalities, represented by matrix A and vectors lb and ub:

lb ≤ Ax ≤ ub

• Bounds, represented by vectors lb and ub:

lb ≤ x ≤ ub
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TaskBase

Interface of TaskBase:

TaskBase(string name, Model model);

Constraint compute(double t, Vector q, Vector v, Data data);

Three kinds of task:

• TaskMotion: linear function of robot accelerations

• TaskContactForce: linear function of contact forces

• TaskActuation: linear function of joint torques

Tasks can compute either:

• equality constraints, e.g., TaskComEquality, TaskJointPosture,

TaskSE3Equality

• bounds, e.g., TaskJointBounds

• inequality constraints, e.g., friction cones
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ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight);

ConstraintBase computeMotionTask(t, q, v, data);

InequalityConstraint computeForceTask(t, q, v, data);

ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

Motion task:

• represents motion constraint caused by rigid contact

• Jv̇ = −J̇v −Kpe − Kd ė

Force task:

• represents inequality constraints acting on contact forces

• e.g., friction cone constraints

• Af ≤ a
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Contact6d

• unilateral plane contact → 6d motion constraint

• minimal force representation → 6d (3d force + 3d moment)

PROBLEM

• hard to write friction constraints with 6d representation (especially

for non-rectangular shapes)

• easy to write friction constraints if force represented as collection of

3d forces applied at vertices of contact surface

• redundant representation, e.g., 4-vertex surface → 12 variables

• redundancy is an issue for motion constraint if solver does not

handle redundant constraints (as eiQuadProg).

SOLUTION

• use 6d representation for motion constraint Jv̇ = −J̇v ∈ R6

• but 12d representation for force variable f ∈ R12

• force-generator matrix T ∈ R6×12 defines mapping between two

representations: τcontact = J>Tf
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InverseDynamicsFormulationBase

Central class of the whole library

Methods to add tasks:

addMotionTask(MotionTask task, double weight, int priority);

addForceTask(ForceTask task, double weight, int priority);

addTorqueTask(TorqueTask task, double weight, int priority);

Method to add rigid contacts:

addRigidContact(RigidContact contact, double force_reg_weight);

Methods to convert TSID problem into (Hierarchical) QP:

HqpData computeProblemData(double time, Vector q, Vector v);

HqpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel

#typedef vector<ConstraintLevel> HqpData
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Examples



Exercise 1

Open Terminal and execute:

cd $TSID_HOME

git pull

cd exercizes/notebooks

jupyter notebook

Open file ex 1 com sin track talos.ipynb

Possible things to try:

• Change CoM/posture gains and see effect

• Change CoM/posture weights and see effect

• Set reference CoM outside support polygon (e.g., 20 cm to the

side), what happens? Why?

• Increase CoM frequency until tracking gets bad. Why does that

happen?

• Add contact on hand
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Exercise 2: Balancing

Run TSID HOME/exercizes/ex 3 biped balance with gui.py

• Move reference CoM position

• Push robot and check reaction

• Move CoM over left foot

• Break contact with right foot

• Move reference right foot
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