Task-Space Inverse Dynamics:
Implementation

Optimization-based Robot Control

Andrea Del Prete

University of Trento

Table of contents

1. Introduction
2. Details

3. Examples

Introduction

Key Concepts

Task

o Motion
o Force

e Actuation

Key Concepts

Task

o Motion
o Force

e Actuation

Rigid Contact

e similar to Task, but

e associated to reaction forces

Key Concepts

Task Inverse Dynamics Formulation
e Motion e collects Tasks and
e Force RigidContacts

o Actuation e translates them into HQP

Rigid Contact

e similar to Task, but

e associated to reaction forces

Key Concepts

Task Inverse Dynamics Formulation
e Motion e collects Tasks and
e Force RigidContacts
e Actuation e translates them into HQP
Rigid Contact HQP Solver
o similar to Task, but e solves a HQP

e associated to reaction forces

Other Concepts

Constraint

o affine function
e purely mathematical

o used to represent HQP

Other Concepts

Constraint

o affine function
e purely mathematical

o used to represent HQP

Robot Wrapper

e contains robot model

e provides utility functions to
compute robot quantities

e e.g., mass matrix, Jacobians

Other Concepts

Constraint Trajectory
o affine function e maps time to vector values
e purely mathematical e pos, vel, acc
o used to represent HQP e position and velocity can have

different sizes (Lie groups)
Robot Wrapper
e contains robot model

e provides utility functions to
compute robot quantities

e e.g., mass matrix, Jacobians

Details

ConstraintBase

o A linear (affine) function

ConstraintBase

o A linear (affine) function

e Purely mathematical object

ConstraintBase

o A linear (affine) function
e Purely mathematical object

e “Unaware” of what the function represents

Three kinds of constraints:

ConstraintBase

o A linear (affine) function
e Purely mathematical object

e “Unaware” of what the function represents

Three kinds of constraints:
e Equalities, represented by matrix A and vector a:

Ax = a

ConstraintBase

o A linear (affine) function
e Purely mathematical object

e “Unaware” of what the function represents
Three kinds of constraints:
e Equalities, represented by matrix A and vector a:
Ax = a
e Inequalities, represented by matrix A and vectors /b and ub:

Ib<Ax < ub

ConstraintBase

o A linear (affine) function
e Purely mathematical object

e “Unaware” of what the function represents
Three kinds of constraints:
e Equalities, represented by matrix A and vector a:
Ax = a
e Inequalities, represented by matrix A and vectors /b and ub:
Ib<Ax < ub
e Bounds, represented by vectors /b and ub:

Ib<x<ub

Interface of TaskBase:

TaskBase (string name, Model model);

Constraint compute(double t, Vector q, Vector v, Data data);

Interface of TaskBase:

TaskBase (string name, Model model);
Constraint compute(double t, Vector q, Vector v, Data data);

Three kinds of task:

e TaskMotion: linear function of robot accelerations
e TaskContactForce: linear function of contact forces

e TaskActuation: linear function of joint torques

Interface of TaskBase:

TaskBase (string name, Model model);
Constraint compute(double t, Vector q, Vector v, Data data);

Three kinds of task:

e TaskMotion: linear function of robot accelerations
e TaskContactForce: linear function of contact forces

e TaskActuation: linear function of joint torques
Tasks can compute either:

e equality constraints, e.g., TaskComEquality, TaskJointPosture,
TaskSE3Equality

Interface of TaskBase:

TaskBase (string name, Model model);
Constraint compute(double t, Vector q, Vector v, Data data);

Three kinds of task:

e TaskMotion: linear function of robot accelerations
e TaskContactForce: linear function of contact forces

e TaskActuation: linear function of joint torques
Tasks can compute either:

e equality constraints, e.g., TaskComEquality, TaskJointPosture,
TaskSE3Equality

e bounds, e.g., TaskJointBounds

Interface of TaskBase:

TaskBase (string name, Model model);
Constraint compute(double t, Vector q, Vector v, Data data);

Three kinds of task:

e TaskMotion: linear function of robot accelerations
e TaskContactForce: linear function of contact forces

e TaskActuation: linear function of joint torques
Tasks can compute either:

e equality constraints, e.g., TaskComEquality, TaskJointPosture,
TaskSE3Equality

e bounds, e.g., TaskJointBounds

e inequality constraints, e.g., friction cones

ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight) ;
ConstraintBase computeMotionTask(t, q, v, data);
InequalityConstraint computeForceTask(t, q, v, data);
ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight) ;
ConstraintBase computeMotionTask(t, q, v, data);
InequalityConstraint computeForceTask(t, q, v, data);
ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

Motion task:

e represents motion constraint caused by rigid contact
o Jv=—Jv

ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight) ;
ConstraintBase computeMotionTask(t, q, v, data);
InequalityConstraint computeForceTask(t, q, v, data);
ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

Motion task:

e represents motion constraint caused by rigid contact
o JU=—Jv —Kye— Kyé

ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight) ;
ConstraintBase computeMotionTask(t, q, v, data);
InequalityConstraint computeForceTask(t, q, v, data);
ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

Motion task:
e represents motion constraint caused by rigid contact
o JU=—Jv —Kye— Kyé

Force task:

e represents inequality constraints acting on contact forces
e e.g., friction cone constraints
o Af < a

ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight);
ConstraintBase computeMotionTask(t, q, v, data);
InequalityConstraint computeForceTask(t, q, v, data);
ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

Force Regularization task:
e regularizes contact forces
e e.g., keep them close to friction cone center

ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight);
ConstraintBase computeMotionTask(t, q, v, data);
InequalityConstraint computeForceTask(t, q, v, data);
ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

Force Regularization task:
e regularizes contact forces
e e.g., keep them close to friction cone center

Force-Generator matrix T:
e maps force variables to motion constraint representation
e Dynamic: Mv+h=STr+JTTf
e Motion constraint: Jv = —Jv
e Friction cones: Af < a

e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

PROBLEM
e hard to write friction constraints with 6d representation (especially
for non-rectangular shapes)

e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

PROBLEM
e hard to write friction constraints with 6d representation (especially

for non-rectangular shapes)
e easy to write friction constraints if force represented as collection of
3d forces applied at vertices of contact surface

e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

PROBLEM
e hard to write friction constraints with 6d representation (especially
for non-rectangular shapes)
e easy to write friction constraints if force represented as collection of
3d forces applied at vertices of contact surface
e redundant representation, e.g., 4-vertex surface — 12 variables

e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

PROBLEM
e hard to write friction constraints with 6d representation (especially
for non-rectangular shapes)
e easy to write friction constraints if force represented as collection of
3d forces applied at vertices of contact surface
e redundant representation, e.g., 4-vertex surface — 12 variables

e redundancy is an issue for motion constraint if solver does not
handle redundant constraints (as eiQuadProg).

e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

PROBLEM

e hard to write friction constraints with 6d representation (especially
for non-rectangular shapes)

e easy to write friction constraints if force represented as collection of
3d forces applied at vertices of contact surface

e redundant representation, e.g., 4-vertex surface — 12 variables

e redundancy is an issue for motion constraint if solver does not

handle redundant constraints (as eiQuadProg).

SOLUTION
e use 6d representation for motion constraint Jv = —Jv eR®

e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

PROBLEM

e hard to write friction constraints with 6d representation (especially
for non-rectangular shapes)

e easy to write friction constraints if force represented as collection of
3d forces applied at vertices of contact surface

e redundant representation, e.g., 4-vertex surface — 12 variables

e redundancy is an issue for motion constraint if solver does not

handle redundant constraints (as eiQuadProg).

SOLUTION
e use 6d representation for motion constraint Jv = —Jv eR®
e but 12d representation for force variable f € R?

e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

PROBLEM

e hard to write friction constraints with 6d representation (especially
for non-rectangular shapes)

e easy to write friction constraints if force represented as collection of
3d forces applied at vertices of contact surface

e redundant representation, e.g., 4-vertex surface — 12 variables

e redundancy is an issue for motion constraint if solver does not

handle redundant constraints (as eiQuadProg).

SOLUTION
e use 6d representation for motion constraint Jv = —Jv eR®
e but 12d representation for force variable f € R?
e force-generator matrix T € R%*12 defines mapping between two
representations: Teoptact = J ' TF

InverseDynamicsFormulationBase

Central class of the whole library

Methods to add tasks:

addMotionTask(MotionTask task, double weight, int priority);
addForceTask(ForceTask task, double weight, int priority);
addTorqueTask(TorqueTask task, double weight, int priority);

InverseDynamicsFormulationBase

Central class of the whole library

Methods to add tasks:

addMotionTask(MotionTask task, double weight, int priority);
addForceTask(ForceTask task, double weight, int priority);
addTorqueTask(TorqueTask task, double weight, int priority);

Method to add rigid contacts:
addRigidContact (RigidContact contact, double force_reg_weight);

InverseDynamicsFormulationBase

Central class of the whole library

Methods to add tasks:

addMotionTask(MotionTask task, double weight, int priority);
addForceTask(ForceTask task, double weight, int priority);
addTorqueTask(TorqueTask task, double weight, int priority);

Method to add rigid contacts:

addRigidContact (RigidContact contact, double force_reg_weight);

Methods to convert TSID problem into (Hierarchical) QP:
HgpData computeProblemData(double time, Vector q, Vector v);

InverseDynamicsFormulationBase

Central class of the whole library

Methods to add tasks:

addMotionTask(MotionTask task, double weight, int priority);
addForceTask(ForceTask task, double weight, int priority);
addTorqueTask(TorqueTask task, double weight, int priority);

Method to add rigid contacts:
addRigidContact (RigidContact contact, double force_reg_weight);

Methods to convert TSID problem into (Hierarchical) QP:
HgpData computeProblemData(double time, Vector q, Vector v);

HgpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel
#typedef vector<ConstraintLevel> HqgpData

Examples

Exercise 1

Open Terminal and execute:

cd $TSID_HOME

git pull

cd exercizes/notebooks
jupyter notebook

Open file ex_1_com_sin_track_talos.ipynb

10

Exercise 1

Open Terminal and execute:

cd $TSID_HOME

git pull

cd exercizes/notebooks
jupyter notebook

Open file ex_1_com_sin_track_talos.ipynb

Possible things to try:

10

Exercise 1

Open Terminal and execute:

cd $TSID_HOME

git pull

cd exercizes/notebooks
jupyter notebook

Open file ex_1_com_sin_track_talos.ipynb
Possible things to try:

e Change CoM/posture gains and see effect

10

Exercise 1

Open Terminal and execute:

cd $TSID_HOME

git pull

cd exercizes/notebooks
jupyter notebook

Open file ex_1_com_sin_track_talos.ipynb
Possible things to try:

e Change CoM/posture gains and see effect
e Change CoM/posture weights and see effect

10

Exercise 1

Open Terminal and execute:

cd $TSID_HOME

git pull

cd exercizes/notebooks
jupyter notebook

Open file ex_1_com_sin_track_talos.ipynb
Possible things to try:

e Change CoM/posture gains and see effect

e Change CoM/posture weights and see effect

e Set reference CoM outside support polygon (e.g., 20 cm to the
side), what happens? Why?

10

Exercise 1

Open Terminal and execute:

cd $TSID_HOME

git pull

cd exercizes/notebooks
jupyter notebook

Open file ex_1_com_sin_track_talos.ipynb

Possible things to try:

e Change CoM/posture gains and see effect

e Change CoM/posture weights and see effect

e Set reference CoM outside support polygon (e.g., 20 cm to the
side), what happens? Why?

e Increase CoM frequency until tracking gets bad. Why does that

happen?

10

Exercise 1

Open Terminal and execute:

cd $TSID_HOME
git pull

cd exercizes/notebooks

jupyter notebook

Open file ex_1_com_sin_track_talos.ipynb

Possible things to try:

Change CoM/posture gains and see effect

Change CoM/posture weights and see effect

Set reference CoM outside support polygon (e.g., 20 cm to the
side), what happens? Why?

Increase CoM frequency until tracking gets bad. Why does that
happen?

Add contact on hand

10

Exercise 2: Balancing

Run TSID_HOME/exercizes/ex_3_biped_balance_with_gui.py

11

Exercise 2: Balancing

Run TSID_HOME/exercizes/ex_3_biped_balance_with_gui.py

e Move reference CoM position

11

Exercise 2: Balancing

Run TSID_HOME/exercizes/ex_3_biped_balance_with_gui.py

e Move reference CoM position

e Push robot and check reaction

11

Exercise 2: Balancing

Run TSID_HOME/exercizes/ex_3_biped_balance_with_gui.py

e Move reference CoM position
e Push robot and check reaction

e Move CoM over left foot

11

Exercise 2: Balancing

Run TSID_HOME/exercizes/ex_3_biped_balance_with_gui.py

Move reference CoM position

Push robot and check reaction

Move CoM over left foot

e Break contact with right foot

11

Exercise 2: Balancing

Run TSID_HOME/exercizes/ex_3_biped_balance_with_gui.py

Move reference CoM position

Push robot and check reaction

Move CoM over left foot

e Break contact with right foot

Move reference right foot

11

	Introduction
	Details
	Examples

