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e Motion e collects Tasks and
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e Actuation e translates them into HQP
Rigid Contact HQP Solver
o similar to Task, but e solves a HQP

e associated to reaction forces
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Other Concepts

Constraint Trajectory
o affine function e maps time to vector values
e purely mathematical e pos, vel, acc
o used to represent HQP e position and velocity can have

different sizes (Lie groups)
Robot Wrapper
e contains robot model

e provides utility functions to
compute robot quantities

e e.g., mass matrix, Jacobians
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ConstraintBase

o A linear (affine) function
e Purely mathematical object

e “Unaware” of what the function represents
Three kinds of constraints:
e Equalities, represented by matrix A and vector a:
Ax = a
e Inequalities, represented by matrix A and vectors /b and ub:
Ib<Ax < ub
e Bounds, represented by vectors /b and ub:

Ib<x<ub
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Interface of TaskBase:

TaskBase (string name, Model model);
Constraint compute(double t, Vector q, Vector v, Data data);

Three kinds of task:

e TaskMotion: linear function of robot accelerations
e TaskContactForce: linear function of contact forces

e TaskActuation: linear function of joint torques
Tasks can compute either:

e equality constraints, e.g., TaskComEquality, TaskJointPosture,
TaskSE3Equality

e bounds, e.g., TaskJointBounds

e inequality constraints, e.g., friction cones
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ContactBase

Interface of ContactBase:

ContactBase(name, Kp, Kd, bodyName, regWeight);
ConstraintBase computeMotionTask(t, q, v, data);
InequalityConstraint computeForceTask(t, q, v, data);
ConstraintBase computeForceRegularizationTask(t, q, v, data);

Matrix computeForceGeneratorMatrix();

Force Regularization task:
e regularizes contact forces
e e.g., keep them close to friction cone center

Force-Generator matrix T:
e maps force variables to motion constraint representation
e Dynamic: Mv+h=STr+JTTf
e Motion constraint: Jv = —Jv
e Friction cones: Af < a
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e unilateral plane contact — 6d motion constraint
e minimal force representation — 6d (3d force + 3d moment)

PROBLEM

e hard to write friction constraints with 6d representation (especially
for non-rectangular shapes)

e easy to write friction constraints if force represented as collection of
3d forces applied at vertices of contact surface

e redundant representation, e.g., 4-vertex surface — 12 variables

e redundancy is an issue for motion constraint if solver does not

handle redundant constraints (as eiQuadProg).

SOLUTION
e use 6d representation for motion constraint Jv = —Jv eR®
e but 12d representation for force variable f € R?
e force-generator matrix T € R%*12 defines mapping between two
representations: Teoptact = J ' TF
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InverseDynamicsFormulationBase

Central class of the whole library

Methods to add tasks:

addMotionTask(MotionTask task, double weight, int priority);
addForceTask(ForceTask task, double weight, int priority);
addTorqueTask(TorqueTask task, double weight, int priority);

Method to add rigid contacts:
addRigidContact (RigidContact contact, double force_reg_weight);

Methods to convert TSID problem into (Hierarchical) QP:
HgpData computeProblemData(double time, Vector q, Vector v);

HgpData defined as:

#typedef vector<pair<double, ConstraintBase>> ConstraintLevel
#typedef vector<ConstraintLevel> HqgpData
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Exercise 1

Open Terminal and execute:

cd $TSID_HOME
git pull

cd exercizes/notebooks

jupyter notebook

Open file ex_1_com_sin_track_talos.ipynb

Possible things to try:

Change CoM/posture gains and see effect

Change CoM/posture weights and see effect

Set reference CoM outside support polygon (e.g., 20 cm to the
side), what happens? Why?

Increase CoM frequency until tracking gets bad. Why does that
happen?

Add contact on hand

10
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