Task-Space Inverse Dynamics

Optimization-based Robot Control

Andrea Del Prete

University of Trento

Table of contents

1. From Joint Space to Task Space Control
2. Task Models
3. Optimization-Based Control
4. Multi-Task Control

From Joint Space to Task Space
 Control

Limits of Joint-Space Control

Joint-space control needs reference joint trajectory $q^{r}(t)$.

Limits of Joint-Space Control

Joint-space control needs reference joint trajectory $q^{r}(t)$.
What if we have reference trajectory $x^{r}(t)$ for end-effector?

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory $q^{r}(t)$ corresponding to $x^{r}(t)$, then apply joint-space control:

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory $q^{r}(t)$ corresponding to $x^{r}(t)$, then apply joint-space control:

Find $q^{r}(t)$ such that $F G\left(q^{r}(t)\right)=x^{r}(t) \quad \forall t \in[0, T]$,

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory $q^{r}(t)$ corresponding to $x^{r}(t)$, then apply joint-space control:

$$
\begin{array}{rlr}
\text { Find } q^{r}(t) & \text { such that } & F G\left(q^{r}(t)\right)=x^{r}(t) \\
\rightarrow \quad q^{r}(t)=F G^{\dagger}\left(x^{r}(t)\right) & \forall t \in[0, T], \tag{1}
\end{array}
$$

where:

- $F G(.) \triangleq$ forward geometry function of end-effector
- $F G^{\dagger}($.$) is such that F G\left(F G^{\dagger}(x)\right)=x, \forall x$

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory $q^{r}(t)$ corresponding to $x^{r}(t)$, then apply joint-space control:

$$
\begin{array}{rlr}
\text { Find } q^{r}(t) & \text { such that } & F G\left(q^{r}(t)\right)=x^{r}(t) \\
\rightarrow \quad q^{r}(t)=F G^{\dagger}\left(x^{r}(t)\right) & \forall t \in[0, T], \tag{1}\\
& \forall 0, T],
\end{array}
$$

where:

- $F G(.) \triangleq$ forward geometry function of end-effector
- $F G^{\dagger}($.$) is such that F G\left(F G^{\dagger}(x)\right)=x, \forall x$

ISSUES

Problem (1) is challenging (Inverse Geometry, nonconvex problem with infinitely many solutions).

Option 1: Mapping End-Effector Space to Joint Space

Compute joint trajectory $q^{r}(t)$ corresponding to $x^{r}(t)$, then apply joint-space control:

$$
\begin{array}{rll}
\text { Find } q^{r}(t) & \text { such that } & F G\left(q^{r}(t)\right)=x^{r}(t) \\
\rightarrow \quad q^{r}(t)=F G^{\dagger}\left(x^{r}(t)\right) & \forall t \in[0, T], \tag{1}\\
& \forall 0, T],
\end{array}
$$

where:

- $F G(.) \triangleq$ forward geometry function of end-effector
- $F G^{\dagger}($.$) is such that F G\left(F G^{\dagger}(x)\right)=x, \forall x$

ISSUES

Problem (1) is challenging (Inverse Geometry, nonconvex problem with infinitely many solutions).
Tracking $q^{r}(t)$ is sufficient but not necessary to track $x^{r}(t)$: controller rejects also perturbations affecting q without affecting $F G(q)$.

Option 2: End-Effector Control

Feedback directly end-effector configuration:

$$
\begin{equation*}
\ddot{x}^{d}=\ddot{x}^{r}-K_{d}\left(\dot{x}-\dot{x}^{r}\right)-K_{p}\left(x-x^{r}\right) \tag{2}
\end{equation*}
$$

Option 2: End-Effector Control

Feedback directly end-effector configuration:

$$
\begin{equation*}
\ddot{x}^{d}=\ddot{x}^{r}-K_{d}\left(\dot{x}-\dot{x}^{r}\right)-K_{p}\left(x-x^{r}\right) \tag{2}
\end{equation*}
$$

Differenciate relationship between q and x :

$$
x=F G(q)
$$

Option 2: End-Effector Control

Feedback directly end-effector configuration:

$$
\begin{equation*}
\ddot{x}^{d}=\ddot{x}^{r}-K_{d}\left(\dot{x}-\dot{x}^{r}\right)-K_{p}\left(x-x^{r}\right) \tag{2}
\end{equation*}
$$

Differenciate relationship between q and x :

$$
\begin{aligned}
& x=F G(q) \\
& \dot{x}=\frac{d}{d t} F G(q)=\underbrace{\frac{d F G}{d q}}_{J} \frac{d q}{d t}=J_{v}
\end{aligned}
$$

Option 2: End-Effector Control

Feedback directly end-effector configuration:

$$
\begin{equation*}
\ddot{x}^{d}=\ddot{x}^{r}-K_{d}\left(\dot{x}-\dot{x}^{r}\right)-K_{p}\left(x-x^{r}\right) \tag{2}
\end{equation*}
$$

Differenciate relationship between q and x :

$$
\begin{align*}
& x=F G(q) \\
& \dot{x}=\frac{d}{d t} F G(q)=\underbrace{\frac{d F G}{d q}}_{J} \frac{d q}{d t}=J_{v} \tag{3}\\
& \ddot{x}=J \dot{v}+j_{V}
\end{align*}
$$

Option 2: End-Effector Control

Feedback directly end-effector configuration:

$$
\begin{equation*}
\ddot{x}^{d}=\ddot{x}^{r}-K_{d}\left(\dot{x}-\dot{x}^{r}\right)-K_{p}\left(x-x^{r}\right) \tag{2}
\end{equation*}
$$

Differenciate relationship between q and x :

$$
\begin{align*}
& x=F G(q) \\
& \dot{x}=\frac{d}{d t} F G(q)=\underbrace{\frac{d F G}{d q}}_{J} \frac{d q}{d t}=J_{v} \tag{3}\\
& \ddot{x}=J \dot{v}+j_{v}
\end{align*}
$$

Desired accelerations should be:

$$
\begin{equation*}
\dot{v}^{d}=J^{\dagger}\left(\ddot{x}^{d}-j_{v}\right) \tag{4}
\end{equation*}
$$

Option 2: End-Effector Control

Feedback directly end-effector configuration:

$$
\begin{equation*}
\ddot{x}^{d}=\ddot{x}^{r}-K_{d}\left(\dot{x}-\dot{x}^{r}\right)-K_{p}\left(x-x^{r}\right) \tag{2}
\end{equation*}
$$

Differenciate relationship between q and x :

$$
\begin{align*}
& x=F G(q) \\
& \dot{x}=\frac{d}{d t} F G(q)=\underbrace{\frac{d F G}{d q}}_{J} \frac{d q}{d t}=J_{v} \tag{3}\\
& \ddot{x}=J \dot{v}+j_{v}
\end{align*}
$$

Desired accelerations should be:

$$
\begin{equation*}
\dot{v}^{d}=J^{\dagger}\left(\ddot{x}^{d}-j_{v}\right) \tag{4}
\end{equation*}
$$

Finally compute joint torques as:

$$
\begin{equation*}
\tau=M \dot{v}^{d}+h \tag{5}
\end{equation*}
$$

Option 1 VS Option 2

To summarize, both options compute joint torques as:

$$
\begin{equation*}
\tau=M \dot{v}^{d}+h \tag{6}
\end{equation*}
$$

Option 1 VS Option 2

To summarize, both options compute joint torques as:

$$
\begin{equation*}
\tau=M \dot{v}^{d}+h \tag{6}
\end{equation*}
$$

Option 1 computes \dot{v}^{d} as:

$$
\begin{equation*}
\dot{v}^{d}=\dot{v}^{r}-P D\left(q-F G^{\dagger}\left(x^{r}\right)\right) \tag{7}
\end{equation*}
$$

FG is "inverted" at configuration level.

Option 1 VS Option 2

To summarize, both options compute joint torques as:

$$
\begin{equation*}
\tau=M \dot{v}^{d}+h \tag{6}
\end{equation*}
$$

Option 1 computes \dot{v}^{d} as:

$$
\begin{equation*}
\dot{v}^{d}=\dot{v}^{r}-P D\left(q-F G^{\dagger}\left(x^{r}\right)\right) \tag{7}
\end{equation*}
$$

FG is "inverted" at configuration level.

Option 2 computes \dot{v}^{d} as:
$\dot{v}^{d}=J^{\dagger}\left(\ddot{x}^{r}-P D\left(x-x^{r}\right)-j v\right)$ (8)

FG is "inverted" at acceleration level.

Option 1 VS Option 2

Option 2 typically preferred:

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space
+ No pre-computations

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space
+ No pre-computations
+ Online specification of reference trajectory

Option 1 VS Option 2

Option 2 typically preferred:

+ Gains defined in Cartesian space
+ No pre-computations
+ Online specification of reference trajectory
- More complex controller

End-Effector Control as LSP

End-effector control law (Option 2):

$$
\begin{align*}
\tau & =M \dot{v}^{d}+h \\
\dot{v}^{d} & =J^{\dagger}\left(\ddot{x}^{d}-j v\right) \tag{9}\\
\ddot{x}^{d} & =\ddot{x}^{r}-P D\left(x-x^{r}\right)
\end{align*}
$$

End-Effector Control as LSP

End-effector control law (Option 2):

$$
\begin{align*}
\tau & =M \dot{v}^{d}+h \\
\dot{v}^{d} & =J^{\dagger}\left(\ddot{x}^{d}-j v\right) \tag{9}\\
\ddot{x}^{d} & =\ddot{x}^{r}-P D\left(x-x^{r}\right)
\end{align*}
$$

can be computed as:

$$
\begin{array}{cl}
\underset{\tau, \dot{i}}{\operatorname{minimize}} & \left\|J \dot{v}+j_{v}-\ddot{x}^{d}\right\|^{2} \tag{10}\\
\text { subject to } & M \dot{v}+h=\tau
\end{array}
$$

Task Models

Task-Function Approach

Generalize concept of end-effector with Task.

Task-Function Approach

Generalize concept of end-effector with Task.
Task $=$ control objective.

Task-Function Approach

Generalize concept of end-effector with Task.
Task $=$ control objective.
Describe tasks as functions e to minimize (as in optimal control).

Task-Function Approach

Generalize concept of end-effector with Task.
Task $=$ control objective.
Describe tasks as functions e to minimize (as in optimal control).
Assume e measures error between real and reference output $y \in \mathbb{R}^{m}$:

$$
\underbrace{e(x, u, t)}_{\text {error }}=\underbrace{y(x, u)}_{\text {real }}-\underbrace{y^{*}(t)}_{\text {reference }}
$$

Task-Function Approach

Generalize concept of end-effector with Task.
Task $=$ control objective.
Describe tasks as functions e to minimize (as in optimal control).
Assume e measures error between real and reference output $y \in \mathbb{R}^{m}$:

$$
\underbrace{e(x, u, t)}_{\text {error }}=\underbrace{y(x, u)}_{\text {real }}-\underbrace{y^{*}(t)}_{\text {reference }}
$$

N.B.

Here: e depends on instantaneous state-control value.
In optimal control: e depends on state-control trajectory.

Task-Function Types

IDEA

Given $e(x, u, t)$, find affine function of \dot{v} and u to minimize.

Task-Function Types

IDEA

Given $e(x, u, t)$, find affine function of \dot{v} and u to minimize.
Three kinds of task functions:

- Affine functions of $u: e(u, t)=A_{u} u-a(t)$
- Nonlinear functions of $v: e(v, t)=y(v)-y^{*}(t)$
- Nonlinear functions of $q: e(q, t)=y(q)-y^{*}(t)$

Task-Function Types

IDEA

Given $e(x, u, t)$, find affine function of \dot{v} and u to minimize.
Three kinds of task functions:

- Affine functions of $u: e(u, t)=A_{u} u-a(t)$
- Nonlinear functions of $v: e(v, t)=y(v)-y^{*}(t)$
- Nonlinear functions of $q: e(q, t)=y(q)-y^{*}(t)$

Issue

q and v are not variables in Inverse Dynamics LSP.

Task-Function Types

IDEA

Given $e(x, u, t)$, find affine function of \dot{v} and u to minimize.
Three kinds of task functions:

- Affine functions of $u: e(u, t)=A_{u} u-a(t)$
- Nonlinear functions of $v: e(v, t)=y(v)-y^{*}(t)$
- Nonlinear functions of $q: e(q, t)=y(q)-y^{*}(t)$

Issue

q and v are not variables in Inverse Dynamics LSP.

Solution

Impose dynamics of $e(x, t)$ (e.g., $\dot{e}=\ldots$)
which should be affine function of \dot{v}
such that $\lim _{t \rightarrow \infty} e(x, t)=0$

Velocity Task-Function

Consider task function: $e(v, t)=y(v)-y^{*}(t)$.

Velocity Task-Function

Consider task function: $e(v, t)=y(v)-y^{*}(t)$.
Impose first-order linear dynamic:

$$
\dot{e}=-K e
$$

Velocity Task-Function

Consider task function: $e(v, t)=y(v)-y^{*}(t)$.
Impose first-order linear dynamic:

$$
\begin{aligned}
\dot{e} & =-K e \\
\underbrace{\frac{\partial y}{\partial v}}_{\text {Jacobian }} \dot{v}-\dot{y}^{*} & =-K e
\end{aligned}
$$

Velocity Task-Function

Consider task function: $e(v, t)=y(v)-y^{*}(t)$.
Impose first-order linear dynamic:

$$
\begin{align*}
& \underbrace{\frac{\partial y}{\partial v}}_{\text {Jacobian }} \dot{v}=-K e \\
& \underbrace{J}_{A_{v}}-\dot{y}^{*}=-K e \tag{11}\\
& \dot{v}=\underbrace{\dot{y}^{*}-K e}_{a}
\end{align*}
$$

Velocity Task-Function

Consider task function: $e(v, t)=y(v)-y^{*}(t)$.
Impose first-order linear dynamic:

$$
\begin{aligned}
\dot{e} & =-K e \\
\underbrace{\frac{\partial y}{\partial v}}_{\text {Jacobian }} \dot{v}-\dot{y}^{*} & =-K e \\
\underbrace{J}_{A_{v}} \dot{v} & =\underbrace{\dot{y}^{*}-K e}_{a}
\end{aligned}
$$

We got affine function of \dot{v}.

Velocity Task-Function

Consider task function: $e(v, t)=y(v)-y^{*}(t)$.
Impose first-order linear dynamic:

$$
\begin{aligned}
\dot{e} & =-K e \\
\underbrace{\frac{\partial y}{\partial v}}_{\text {Jacobian }} \dot{v}-\dot{y}^{*} & =-K e \\
\underbrace{J}_{A_{v}} \dot{v} & =\underbrace{\dot{y}^{*}-K e}_{a}
\end{aligned}
$$

We got affine function of \dot{v}.
N.B.

Could also impose nonlinear dynamics, but linear is ok for most cases.

Configuration Task-Function

Consider task function: $e(q, t)=y(q)-y^{*}(t)$.

Configuration Task-Function

Consider task function: $e(q, t)=y(q)-y^{*}(t)$.
Impose second-order linear dynamics:

$$
\ddot{e}=-K e-D \dot{e}
$$

Configuration Task-Function

Consider task function: $e(q, t)=y(q)-y^{*}(t)$.
Impose second-order linear dynamics:

$$
\begin{aligned}
\ddot{e} & =-K e-D \dot{e} \\
J \dot{v}+j_{v}-\ddot{y}^{*} & =-K e-D \dot{e}
\end{aligned}
$$

Configuration Task-Function

Consider task function: $e(q, t)=y(q)-y^{*}(t)$.
Impose second-order linear dynamics:

$$
\begin{align*}
\ddot{e} & =-K e-D \dot{e} \\
J \dot{v}+j_{v}-\ddot{y}^{*} & =-K e-D \dot{e} \tag{12}\\
\underbrace{J}_{A_{v}} \dot{v} & =\underbrace{\ddot{y}^{*}-j_{v}-K e-D \dot{e}}_{a}
\end{align*}
$$

Configuration Task-Function

Consider task function: $e(q, t)=y(q)-y^{*}(t)$.
Impose second-order linear dynamics:

$$
\begin{align*}
\ddot{e} & =-K e-D \dot{e} \\
J \dot{v}+j_{v}-\ddot{y}^{*} & =-K e-D \dot{e} \tag{12}\\
\underbrace{J}_{A_{v}} \dot{v} & =\underbrace{\ddot{y}^{*}-j_{v}-K e-D \dot{e}}_{a}
\end{align*}
$$

We got affine function of \dot{v}.

Configuration Task-Function

Consider task function: $e(q, t)=y(q)-y^{*}(t)$.
Impose second-order linear dynamics:

$$
\begin{align*}
\ddot{e} & =-K e-D \dot{e} \\
J \dot{v}+j_{v}-\ddot{y}^{*} & =-K e-D \dot{e} \tag{12}\\
\underbrace{J}_{A_{v}} \dot{v} & =\underbrace{\ddot{y}^{*}-j_{v}-K e-D \dot{e}}_{a}
\end{align*}
$$

We got affine function of \dot{v}.
N.B.

Could also impose nonlinear dynamics, but linear is ok for most cases.

From Euclidian Spaces to Lie Groups

So far $y(x, u) \in \mathbb{R}^{m}$.

From Euclidian Spaces to Lie Groups

So far $y(x, u) \in \mathbb{R}^{m}$.
What if $y(x, u) \in S E(3)$? (very common in practice)

From Euclidian Spaces to Lie Groups

So far $y(x, u) \in \mathbb{R}^{m}$.
What if $y(x, u) \in S E(3)$? (very common in practice)
SOLUTION Represent SE(3) elements using homogeneous matrices $y \in \mathbb{R}^{4 \times 4}$ and redefine error function:

$$
e(q, t)=\log \left(y^{*}(t)^{-1} y(q)\right),
$$

where $\log \triangleq$ inverse operation of matrix exponential (i.e. exponential map): transforms displacement into twist.

Task-Function Types: Summary

Functions of $u \rightarrow$ affine.

Task-Function Types: Summary

Functions of $u \rightarrow$ affine.
Functions of $x \rightarrow$ nonlinear, but cannot be directly imposed.

Task-Function Types: Summary

Functions of $u \rightarrow$ affine.
Functions of $x \rightarrow$ nonlinear, but cannot be directly imposed.

- For functions of v impose first derivative.

Task-Function Types: Summary

Functions of $u \rightarrow$ affine.
Functions of $x \rightarrow$ nonlinear, but cannot be directly imposed.

- For functions of v impose first derivative.
- For functions of q impose second derivative.

Task-Function Types: Summary

Functions of $u \rightarrow$ affine.
Functions of $x \rightarrow$ nonlinear, but cannot be directly imposed.

- For functions of v impose first derivative.
- For functions of q impose second derivative.

End up with affine function of \dot{v} and u :

$$
g(z) \triangleq \underbrace{\left[\begin{array}{ll}
A_{v} & A_{u}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
\dot{v} \\
u
\end{array}\right]}_{z}-a
$$

Optimization-Based Control

Task-Space Inverse Dynamics (TSID)

Find τ that minimizes task function:

$$
\begin{align*}
\underset{z=(\dot{v}, \tau)}{\operatorname{minimize}} & \|A z-a\|^{2} \\
\text { subject to } & {\left[\begin{array}{ll}
M & \left.-S^{\top}\right] z=-h
\end{array}, r\right. \text { }} \tag{13}
\end{align*}
$$

TSID for Robots in Soft Contact

If system in contact \rightarrow account for contact forces f.

TSID for Robots in Soft Contact

If system in contact \rightarrow account for contact forces f.
If contacts are soft, use estimated forces \hat{f} :

$$
\begin{align*}
& \underset{z=(\dot{v}, \tau)}{\operatorname{minimize}}\|A z-a\|^{2} \\
& \text { subject to } \quad\left[\begin{array}{ll}
M & -S^{\top}
\end{array}\right] z=-h+J^{\top} \hat{f} \tag{14}
\end{align*}
$$

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

$$
c(q)=\text { const } \quad \Longleftrightarrow \quad \text { Contact points do not move }
$$

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

$$
\begin{array}{rlrl}
c(q) & =\text { const } & \Longleftrightarrow \quad \quad \quad \text { Contact points do not move } \\
J_{v} & =0 \quad & \Longleftrightarrow \quad \text { Contact point velocities are null } \\
J_{\dot{v}}+\dot{J}_{v} & =0 \quad \Longleftrightarrow \quad \text { Contact point accelerations are null }
\end{array}
$$

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

$$
\begin{array}{rlrl}
c(q) & =\text { const } & \Longleftrightarrow \quad \text { Contact points do not move } \\
J_{v} & =0 \quad \Longleftrightarrow \quad \text { Contact point velocities are null } \\
J_{\dot{v}}+\dot{J}_{v} & =0 \quad \Longleftrightarrow \quad \text { Contact point accelerations are null }
\end{array}
$$

Introduce forces and constraints:

$$
\begin{array}{ll}
\underset{z=(\dot{v}, f, \tau)}{\operatorname{minimize}} & \|A z-a\|^{2} \\
\text { subject to } & {\left[\begin{array}{ccc}
J & 0 & 0 \\
M & -J^{\top} & -S^{\top}
\end{array}\right] z=\left[\begin{array}{c}
-j_{v} \\
-h
\end{array}\right]} \tag{15}
\end{array}
$$

Inequality Constraints

Benefit of optimization: inequality constraints.

Inequality Constraints

Benefit of optimization: inequality constraints.
Any inequality affine in $z=(\tau, f, \dot{v})$:

- joint torque bounds: $\tau^{\min } \leq \tau \leq \tau^{\max }$
- (linearized) force friction cones: $B f \leq 0$
- joint bounds: $\dot{v}^{\text {min }} \leq \dot{v} \leq \dot{v}^{\text {max }}$
- collision avoidance (more complicated)

Multi-Task Control

Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform

Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform:

- 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy

Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform:

- 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy
- 18-DoF biped that controls placement of two feet (12 DoFs) has 6 DoFs of redundancy

Multi-Objective Optimization

Complex robots are redundant w.r.t. task they perform:

- 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy
- 18-DoF biped that controls placement of two feet (12 DoFs) has 6 DoFs of redundancy

Can use redundancy to execute secondary tasks, but how?

Weighted Multi-Objective Optimization

N tasks, each defined by task function

$$
g_{i}(z)=\left\|A_{i} z-a_{i}\right\|^{2} \quad i=1 \ldots N
$$

Weighted Multi-Objective Optimization

N tasks, each defined by task function

$$
g_{i}(z)=\left\|A_{i} z-a_{i}\right\|^{2} \quad i=1 \ldots N
$$

Simplest strategy: sum functions using user-defined weights w_{i} :

$$
\begin{array}{ll}
\underset{z=(\dot{v}, f, \tau)}{\operatorname{minimize}} & \sum_{i=1}^{N} w_{i} g_{i}(z) \\
\text { subject to } & {\left[\begin{array}{ccc}
J & 0 & 0 \\
M & -J^{\top} & -S^{\top}
\end{array}\right] z=\left[\begin{array}{c}
-j_{v} \\
-h
\end{array}\right]}
\end{array}
$$

Weighted Multi-Objective Optimization

N tasks, each defined by task function

$$
g_{i}(z)=\left\|A_{i} z-a_{i}\right\|^{2} \quad i=1 \ldots N
$$

Simplest strategy: sum functions using user-defined weights w_{i} :

$$
\begin{array}{ll}
\underset{z=(\dot{v}, f, \tau)}{\operatorname{minimize}} & \sum_{i=1}^{N} w_{i} g_{i}(z) \\
\text { subject to } & {\left[\begin{array}{ccc}
J & 0 & 0 \\
M & -J^{\top} & -S^{\top}
\end{array}\right] z=\left[\begin{array}{c}
-j_{v} \\
-h
\end{array}\right]}
\end{array}
$$

PROS Problem remains computationally-efficient LSP.

Weighted Multi-Objective Optimization

N tasks, each defined by task function

$$
g_{i}(z)=\left\|A_{i} z-a_{i}\right\|^{2} \quad i=1 \ldots N
$$

Simplest strategy: sum functions using user-defined weights w_{i} :

$$
\begin{array}{ll}
\underset{z=(\dot{v}, f, \tau)}{\operatorname{minimize}} & \sum_{i=1}^{N} w_{i} g_{i}(z) \\
\text { subject to } & {\left[\begin{array}{ccc}
J & 0 & 0 \\
M & -J^{\top} & -S^{\top}
\end{array}\right] z=\left[\begin{array}{c}
-j_{v} \\
-h
\end{array}\right]}
\end{array}
$$

PROS Problem remains computationally-efficient LSP.
CONS Hard to find weights \rightarrow too large/small weights lead to numerical issues.

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

- task 1 more important than task 2

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

- task 1 more important than task 2
- task N -1 more important than task N

Solve sequence (cascade) of N problems, from $i=1$:

$$
\begin{aligned}
& g_{i}^{*}=\underset{z=(\dot{v}, f, \tau)}{\operatorname{minimize}} g_{i}(z) \\
& \text { subject to } {\left[\begin{array}{ccc}
J & 0 & 0 \\
M & -J^{\top} & -S^{\top}
\end{array}\right] z=\left[\begin{array}{c}
-j_{v} \\
-h
\end{array}\right] } \\
& g_{j}(z)=g_{j}^{*} \\
& \forall j<i
\end{aligned}
$$

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

- task 1 more important than task 2
- task $\mathrm{N}-1$ more important than task N

Solve sequence (cascade) of N problems, from $i=1$:

$$
\begin{aligned}
g_{i}^{*}=\underset{z=(\dot{v}, f, \tau)}{\operatorname{minimize}} & g_{i}(z) \\
\text { subject to } & {\left[\begin{array}{ccc}
J & 0 & 0 \\
M & -J^{\top} & -S^{\top}
\end{array}\right] z=\left[\begin{array}{c}
-j_{v} \\
-h
\end{array}\right] } \\
& g_{j}(z)=g_{j}^{*}
\end{aligned} \quad \forall j<i<i
$$

PROS Easier to find priorities than weights.

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

- task 1 more important than task 2
- ...
- task N-1 more important than task N

Solve sequence (cascade) of N problems, from $i=1$:

$$
\begin{aligned}
& g_{i}^{*}=\underset{z=(\dot{v}, f, \tau)}{\operatorname{minimize}} g_{i}(z) \\
& \text { subject to } {\left[\begin{array}{ccc}
J & 0 & 0 \\
M & -J^{\top} & -S^{\top}
\end{array}\right] z=\left[\begin{array}{c}
-j_{v} \\
-h
\end{array}\right] } \\
& g_{j}(z)=g_{j}^{*} \\
& \forall j<i
\end{aligned}
$$

PROS Easier to find priorities than weights.
CONS More computationally expensive to solve several LSPs.

