
Joint-Space Control

Optimization-based Robot Control

Andrea Del Prete

University of Trento

Introduction

This document explains the control framework known as Task-Space

Inverse Dynamics (TSID).

TSID is a popular control framework for legged robots.

It all started in 1987 with this paper by Oussama Khatib: “A unified

approach for motion and force control of robot manipulators: The

operational space formulation” [5]

Very active research topic between 2004 and 2015 [10, 6, 7, 9, 4, 3].

Now not so active anymore (i.e. problem solved), but widely used.

1

Introduction

This document explains the control framework known as Task-Space

Inverse Dynamics (TSID).

TSID is a popular control framework for legged robots.

It all started in 1987 with this paper by Oussama Khatib: “A unified

approach for motion and force control of robot manipulators: The

operational space formulation” [5]

Very active research topic between 2004 and 2015 [10, 6, 7, 9, 4, 3].

Now not so active anymore (i.e. problem solved), but widely used.

1

Introduction

This document explains the control framework known as Task-Space

Inverse Dynamics (TSID).

TSID is a popular control framework for legged robots.

It all started in 1987 with this paper by Oussama Khatib: “A unified

approach for motion and force control of robot manipulators: The

operational space formulation” [5]

Very active research topic between 2004 and 2015 [10, 6, 7, 9, 4, 3].

Now not so active anymore (i.e. problem solved), but widely used.

1

Introduction

This document explains the control framework known as Task-Space

Inverse Dynamics (TSID).

TSID is a popular control framework for legged robots.

It all started in 1987 with this paper by Oussama Khatib: “A unified

approach for motion and force control of robot manipulators: The

operational space formulation” [5]

Very active research topic between 2004 and 2015 [10, 6, 7, 9, 4, 3].

Now not so active anymore (i.e. problem solved), but widely used.

1

Schedule

1. Theory of Joint Space Control (≈ 1:15 hour)

2. Implementation (≈ 1 hour)

3. Theory of Task Space Control (≈ 1:15 hour)

4. Implementation (≈ 1 hour)

2

Notation & Definitions

The state of the system is denoted x , (q, v).

Configuration vector q ∈ Rnq of (relative) joint angles.

Velocity vector v = q̇ ∈ Rnv of (relative) joint velocities.

The control inputs are denoted u , τ (joint torques).

The identity matrix is denoted I .

The zero matrix is denoted 0.

When needed, the size of the matrix is written as index, e.g., I3.

3

Notation & Definitions

The state of the system is denoted x , (q, v).

Configuration vector q ∈ Rnq of (relative) joint angles.

Velocity vector v = q̇ ∈ Rnv of (relative) joint velocities.

The control inputs are denoted u , τ (joint torques).

The identity matrix is denoted I .

The zero matrix is denoted 0.

When needed, the size of the matrix is written as index, e.g., I3.

3

Table of contents

1. Joint-Space Inverse Dynamics Control

2. Inverse Dynamics Control as Optimization Problem

4

Joint-Space Inverse Dynamics

Control

Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v̇ + h(q, v) = τ (1)

Problem

Find τ(t) so that q(t) follows reference qr (t).

Assumption

We know dynamics and can measure q and v .

Solution

Set τ = M(q)v̇d + h(q, v) → closed-loop dynamics is v̇ = v̇d .

Select v̇d so that q(t) follows qr (t):

v̇d = v̇ r − Kd(v − v r)− Kp(q − qr) (2)

where Kp,Kd are diagonal positive-definite gain matrices.

5

Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v̇ + h(q, v) = τ (1)

Problem

Find τ(t) so that q(t) follows reference qr (t).

Assumption

We know dynamics and can measure q and v .

Solution

Set τ = M(q)v̇d + h(q, v) → closed-loop dynamics is v̇ = v̇d .

Select v̇d so that q(t) follows qr (t):

v̇d = v̇ r − Kd(v − v r)− Kp(q − qr) (2)

where Kp,Kd are diagonal positive-definite gain matrices.

5

Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v̇ + h(q, v) = τ (1)

Problem

Find τ(t) so that q(t) follows reference qr (t).

Assumption

We know dynamics and can measure q and v .

Solution

Set τ = M(q)v̇d + h(q, v) → closed-loop dynamics is v̇ = v̇d .

Select v̇d so that q(t) follows qr (t):

v̇d = v̇ r − Kd(v − v r)− Kp(q − qr) (2)

where Kp,Kd are diagonal positive-definite gain matrices.

5

Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v̇ + h(q, v) = τ (1)

Problem

Find τ(t) so that q(t) follows reference qr (t).

Assumption

We know dynamics and can measure q and v .

Solution

Set τ = M(q)v̇d + h(q, v) → closed-loop dynamics is v̇ = v̇d .

Select v̇d so that q(t) follows qr (t):

v̇d = v̇ r − Kd(v − v r)− Kp(q − qr) (2)

where Kp,Kd are diagonal positive-definite gain matrices.

5

Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v̇ + h(q, v) = τ (1)

Problem

Find τ(t) so that q(t) follows reference qr (t).

Assumption

We know dynamics and can measure q and v .

Solution

Set τ = M(q)v̇d + h(q, v) → closed-loop dynamics is v̇ = v̇d .

Select v̇d so that q(t) follows qr (t):

v̇d = v̇ r

− Kd(v − v r)− Kp(q − qr) (2)

where Kp,Kd are diagonal positive-definite gain matrices.

5

Robot Manipulator

Given (nonlinear) manipulator dynamics:

M(q)v̇ + h(q, v) = τ (1)

Problem

Find τ(t) so that q(t) follows reference qr (t).

Assumption

We know dynamics and can measure q and v .

Solution

Set τ = M(q)v̇d + h(q, v) → closed-loop dynamics is v̇ = v̇d .

Select v̇d so that q(t) follows qr (t):

v̇d = v̇ r − Kd(v − v r)− Kp(q − qr) (2)

where Kp,Kd are diagonal positive-definite gain matrices.

5

Convergence

Show that q(t) converges to qr (t).

Closed-loop dynamics is

v̇ = v̇ r − Kd (v − v r)︸ ︷︷ ︸
ė

−Kp (q − qr)︸ ︷︷ ︸
e

ë = −Kd ė − Kpe[
ė

ë

]
︸︷︷︸
ẋ

=

[
0 I

−Kp −Kd

]
︸ ︷︷ ︸

A

[
e

ė

]
︸︷︷︸
x

A is Hurwitz if Kp and Kd are diagonal and positive-definite →
limt→∞ x(t) = 0 → limt→∞ q(t) = qr (t)

6

Convergence

Show that q(t) converges to qr (t).

Closed-loop dynamics is

v̇ = v̇ r − Kd (v − v r)︸ ︷︷ ︸
ė

−Kp (q − qr)︸ ︷︷ ︸
e

ë = −Kd ė − Kpe[
ė

ë

]
︸︷︷︸
ẋ

=

[
0 I

−Kp −Kd

]
︸ ︷︷ ︸

A

[
e

ė

]
︸︷︷︸
x

A is Hurwitz if Kp and Kd are diagonal and positive-definite →
limt→∞ x(t) = 0 → limt→∞ q(t) = qr (t)

6

Convergence

Show that q(t) converges to qr (t).

Closed-loop dynamics is

v̇ = v̇ r − Kd (v − v r)︸ ︷︷ ︸
ė

−Kp (q − qr)︸ ︷︷ ︸
e

ë = −Kd ė − Kpe

[
ė

ë

]
︸︷︷︸
ẋ

=

[
0 I

−Kp −Kd

]
︸ ︷︷ ︸

A

[
e

ė

]
︸︷︷︸
x

A is Hurwitz if Kp and Kd are diagonal and positive-definite →
limt→∞ x(t) = 0 → limt→∞ q(t) = qr (t)

6

Convergence

Show that q(t) converges to qr (t).

Closed-loop dynamics is

v̇ = v̇ r − Kd (v − v r)︸ ︷︷ ︸
ė

−Kp (q − qr)︸ ︷︷ ︸
e

ë = −Kd ė − Kpe[
ė

ë

]
︸︷︷︸
ẋ

=

[
0 I

−Kp −Kd

]
︸ ︷︷ ︸

A

[
e

ė

]
︸︷︷︸
x

A is Hurwitz if Kp and Kd are diagonal and positive-definite →
limt→∞ x(t) = 0 → limt→∞ q(t) = qr (t)

6

Convergence

Show that q(t) converges to qr (t).

Closed-loop dynamics is

v̇ = v̇ r − Kd (v − v r)︸ ︷︷ ︸
ė

−Kp (q − qr)︸ ︷︷ ︸
e

ë = −Kd ė − Kpe[
ė

ë

]
︸︷︷︸
ẋ

=

[
0 I

−Kp −Kd

]
︸ ︷︷ ︸

A

[
e

ė

]
︸︷︷︸
x

A is Hurwitz if Kp and Kd are diagonal and positive-definite →
limt→∞ x(t) = 0 → limt→∞ q(t) = qr (t)

6

Many names for the same approach

This control law:

τ = M(v̇ r − Kd ė − Kpe) + h (3)

is known as:

• Inverse-Dynamics (ID) Control: because based on inverse dynamics

computation.

• Computed Torque: because it computes torques needed to get

desired accelerations.

• Feedback Linearization (from control theory): because it uses state

feedback to linearize closed-loop dynamics.

Another variant (with similar properties) exists:

τ = Mv̇ r − Kd ė − Kpe + h (4)

7

Many names for the same approach

This control law:

τ = M(v̇ r − Kd ė − Kpe) + h (3)

is known as:

• Inverse-Dynamics (ID) Control: because based on inverse dynamics

computation.

• Computed Torque: because it computes torques needed to get

desired accelerations.

• Feedback Linearization (from control theory): because it uses state

feedback to linearize closed-loop dynamics.

Another variant (with similar properties) exists:

τ = Mv̇ r − Kd ė − Kpe + h (4)

7

Other Control Laws for Manipulators

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

τ = −Kd ė − Kpe︸ ︷︷ ︸
PD

+ g(q)︸︷︷︸
gravity compensation

(5)

Another (even simpler) option is PID control:

τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds (6)

where integral replaces gravity compensation.

Both control laws are stable (so q → qr).

In theory “ID control“ outperforms “PD+gravity”, which outperforms

“PID”.

In practice the opposite could occur because of model errors.

8

Other Control Laws for Manipulators

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

τ = −Kd ė − Kpe︸ ︷︷ ︸
PD

+ g(q)︸︷︷︸
gravity compensation

(5)

Another (even simpler) option is PID control:

τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds (6)

where integral replaces gravity compensation.

Both control laws are stable (so q → qr).

In theory “ID control“ outperforms “PD+gravity”, which outperforms

“PID”.

In practice the opposite could occur because of model errors.

8

Other Control Laws for Manipulators

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

τ = −Kd ė − Kpe︸ ︷︷ ︸
PD

+ g(q)︸︷︷︸
gravity compensation

(5)

Another (even simpler) option is PID control:

τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds (6)

where integral replaces gravity compensation.

Both control laws are stable (so q → qr).

In theory “ID control“ outperforms “PD+gravity”, which outperforms

“PID”.

In practice the opposite could occur because of model errors.

8

Other Control Laws for Manipulators

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

τ = −Kd ė − Kpe︸ ︷︷ ︸
PD

+ g(q)︸︷︷︸
gravity compensation

(5)

Another (even simpler) option is PID control:

τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds (6)

where integral replaces gravity compensation.

Both control laws are stable (so q → qr).

In theory “ID control“ outperforms “PD+gravity”, which outperforms

“PID”.

In practice the opposite could occur because of model errors.

8

Other Control Laws for Manipulators

Simpler control laws often used for manipulators.

A common option is PD+gravity compensation:

τ = −Kd ė − Kpe︸ ︷︷ ︸
PD

+ g(q)︸︷︷︸
gravity compensation

(5)

Another (even simpler) option is PID control:

τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds (6)

where integral replaces gravity compensation.

Both control laws are stable (so q → qr).

In theory “ID control“ outperforms “PD+gravity”, which outperforms

“PID”.

In practice the opposite could occur because of model errors.

8

Inverse Dynamics Control as

Optimization Problem

Inverse Dynamics (ID) Control as Least-Squares Problem

Solution of optimization problem:

(τ∗, v̇∗) = argmin
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(7)

with v̇d = v̇ r − Kd ė − Kpe

, is exactly the ID control law:

τ∗ = Mv̇d + h, (8)

No advantage in solving (7) to compute (8), but (7) is starting point to

solve more complex problems.

Problem (7) is Least-Squares Program/Problem (LSP).

9

Inverse Dynamics (ID) Control as Least-Squares Problem

Solution of optimization problem:

(τ∗, v̇∗) = argmin
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(7)

with v̇d = v̇ r − Kd ė − Kpe, is exactly the ID control law:

τ∗ = Mv̇d + h, (8)

No advantage in solving (7) to compute (8), but (7) is starting point to

solve more complex problems.

Problem (7) is Least-Squares Program/Problem (LSP).

9

Inverse Dynamics (ID) Control as Least-Squares Problem

Solution of optimization problem:

(τ∗, v̇∗) = argmin
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(7)

with v̇d = v̇ r − Kd ė − Kpe, is exactly the ID control law:

τ∗ = Mv̇d + h, (8)

No advantage in solving (7) to compute (8), but (7) is starting point to

solve more complex problems.

Problem (7) is Least-Squares Program/Problem (LSP).

9

Inverse Dynamics (ID) Control as Least-Squares Problem

Solution of optimization problem:

(τ∗, v̇∗) = argmin
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(7)

with v̇d = v̇ r − Kd ė − Kpe, is exactly the ID control law:

τ∗ = Mv̇d + h, (8)

No advantage in solving (7) to compute (8), but (7) is starting point to

solve more complex problems.

Problem (7) is Least-Squares Program/Problem (LSP).

9

Taxonomy of Convex Optimization Problems

Least-Squares Programs (LSP) have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• 2-norm of linear cost function (||Ax − b||2)

LSPs are subclass of convex Quadratic Programs (QPs), which have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• convex quadratic cost function (x>Hx + h>x , with H ≥ 0)

LSPs and convex QPs can be solved extremely fast with off-the-shelf

softwares

→ We can solve LSP/QPs inside 1 kHz control loops!

10

Taxonomy of Convex Optimization Problems

Least-Squares Programs (LSP) have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• 2-norm of linear cost function (||Ax − b||2)

LSPs are subclass of convex Quadratic Programs (QPs), which have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• convex quadratic cost function (x>Hx + h>x , with H ≥ 0)

LSPs and convex QPs can be solved extremely fast with off-the-shelf

softwares

→ We can solve LSP/QPs inside 1 kHz control loops!

10

Taxonomy of Convex Optimization Problems

Least-Squares Programs (LSP) have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• 2-norm of linear cost function (||Ax − b||2)

LSPs are subclass of convex Quadratic Programs (QPs), which have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• convex quadratic cost function (x>Hx + h>x , with H ≥ 0)

LSPs and convex QPs can be solved extremely fast with off-the-shelf

softwares

→ We can solve LSP/QPs inside 1 kHz control loops!

10

Taxonomy of Convex Optimization Problems

Least-Squares Programs (LSP) have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• 2-norm of linear cost function (||Ax − b||2)

LSPs are subclass of convex Quadratic Programs (QPs), which have:

• linear equality/inequality constraints (Ax ≤ b, or Ax = b)

• convex quadratic cost function (x>Hx + h>x , with H ≥ 0)

LSPs and convex QPs can be solved extremely fast with off-the-shelf

softwares

→ We can solve LSP/QPs inside 1 kHz control loops!

10

Adding Torque Limits to ID Control

Take the ID control LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(9)

LSPs allow for linear inequality constraints → we can add torque limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

(10)

Main advantage of optimization: inequality constraints.

11

Adding Torque Limits to ID Control

Take the ID control LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(9)

LSPs allow for linear inequality constraints → we can add torque limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

(10)

Main advantage of optimization: inequality constraints.

11

Adding Torque Limits to ID Control

Take the ID control LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ
(9)

LSPs allow for linear inequality constraints → we can add torque limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

(10)

Main advantage of optimization: inequality constraints.

11

Adding Current Limits for Electric Motors

In electric motors current i is proportional to torque τ :

i = kττ (11)

Add current limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

(12)

12

Adding Current Limits for Electric Motors

In electric motors current i is proportional to torque τ :

i = kττ (11)

Add current limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

(12)

12

Adding Joint Velocity Limits

Assuming constant accelerations v̇ during time step ∆t:

v(t + ∆t) = v(t) + ∆t v̇ (13)

Add joint velocity limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

(14)

13

Adding Joint Velocity Limits

Assuming constant accelerations v̇ during time step ∆t:

v(t + ∆t) = v(t) + ∆t v̇ (13)

Add joint velocity limits:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

(14)

13

Adding Joint Position Limits

Could use same trick for position limits:

q(t + ∆t) = q(t) + ∆t v(t) +
1

2
∆t2v̇ (15)

However, this can result in high accelerations, typically incompatible with

torque/current limits → unfeasible LSP.

Better approaches exist [1, 8, 2], but we don’t discuss them here.

14

Adding Joint Position Limits

Could use same trick for position limits:

q(t + ∆t) = q(t) + ∆t v(t) +
1

2
∆t2v̇ (15)

However, this can result in high accelerations, typically incompatible with

torque/current limits → unfeasible LSP.

Better approaches exist [1, 8, 2], but we don’t discuss them here.

14

Adding Joint Position Limits

Could use same trick for position limits:

q(t + ∆t) = q(t) + ∆t v(t) +
1

2
∆t2v̇ (15)

However, this can result in high accelerations, typically incompatible with

torque/current limits → unfeasible LSP.

Better approaches exist [1, 8, 2], but we don’t discuss them here.

14

Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

15

Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

15

Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

15

Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

15

Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

15

Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

15

Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

15

Summary

Inverse-Dynamics Control: τ = M(v̇ r − Kd ė − Kpe) + h

Other version: τ = Mv̇ r − Kd ė − Kpe + h

PD + gravity compensation: τ = −Kd ė − Kpe + g(q)

PID: τ = −Kd ė − Kpe −
∫ t

0

Kie(s)ds

ID Control as LSP:

minimize
τ,v̇

||v̇ − v̇d ||2

subject to Mv̇ + h = τ

τmin ≤ τ ≤ τmax

imin ≤ kττ ≤ imax

vmin ≤ v + ∆tv̇ ≤ vmax

15

References i

W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter.

Extending iTaSC to support inequality constraints and

non-instantaneous task specification.

In IEEE International Conference on Robotics and Automation

(ICRA), 2009.

A. Del Prete.

Joint Position and Velocity Bounds in Discrete-Time

Acceleration / Torque Control of Robot Manipulators.

IEEE Robotics and Automation Letters, 3(1), 2018.

A. Del Prete, F. Nori, G. Metta, and L. Natale.

Prioritized Motion-Force Control of Constrained

Fully-Actuated Robots: ”Task Space Inverse Dynamics”.

Robotics and Autonomous Systems, 63:150–157, 2015.

16

References ii

A. Escande, N. Mansard, and P.-B. Wieber.

Hierarchical Quadratic Programming: Fast Online

Humanoid-Robot Motion Generation.

International Journal of Robotics Research, 33(7):1006–1028, 2014.

O. Khatib.

A unified approach for motion and force control of robot

manipulators: The operational space formulation.

IEEE Journal on Robotics and Automation, 3(1):43–53, feb 1987.

M. Mistry, J. Buchli, and S. Schaal.

Inverse dynamics control of floating base systems using

orthogonal decomposition.

2010 IEEE International Conference on Robotics and Automation,

(3):3406–3412, may 2010.

17

References iii

L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, and S. Schaal.

Optimal distribution of contact forces with inverse dynamics

control.

The International Journal of Robotics Research, (January), jan 2013.

S. Rubrecht, V. Padois, P. Bidaud, M. Broissia, and M. Da Silva

Simoes.

Motion safety and constraints compatibility for multibody

robots.

Autonomous Robots, 32(3):333–349, 2012.

L. Saab, O. E. Ramos, N. Mansard, P. Soueres, and J.-y. Fourquet.

Dynamic Whole-Body Motion Generation under Rigid

Contacts and other Unilateral Constraints.

IEEE Transactions on Robotics, 29(2):346–362, 2013.

18

References iv

L. Sentis and O. Khatib.

Synthesis of whole-body behaviors through hierarchical control

of behavioral primitives.

International Journal of Humanoid Robotics, 2(4):505–518, 2005.

19

	Joint-Space Inverse Dynamics Control
	Inverse Dynamics Control as Optimization Problem

